scholarly journals Murine coagulation factor VIII is synthesized in endothelial cells

Blood ◽  
2014 ◽  
Vol 123 (24) ◽  
pp. 3697-3705 ◽  
Author(s):  
Lesley A. Everett ◽  
Audrey C. A. Cleuren ◽  
Rami N. Khoriaty ◽  
David Ginsburg

Key Points Lman1 tissue-specific knockout mice reveal that endothelial cells, not hepatocytes, are the primary source of FVIII biosynthesis. F8 gene expression is heterogeneous among endothelial cell populations in different tissues.

Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 26-26
Author(s):  
Lesley Everett ◽  
Audrey C.A. Cleuren ◽  
Rami Khoriaty ◽  
David Ginsburg

Abstract Combined deficiency of coagulation factors V and VIII (F5F8D) is an autosomal recessive bleeding disorder resulting from mutations in Lman1. This gene encodes a cargo receptor in the early secretory pathway that is responsible for the efficient secretion of factor V (FV) and factor VIII (FVIII) to the plasma. F5F8D is characterized by levels of both FV and FVIII reduced to ∼5-30% of normal. In contrast, Lman1 knockout mouse models of F5F8D exhibit FV and FVIII activities that are ∼50% of normal, relative to wildtype mice. Though FV and FVIII are synthesized at markedly different levels and potentially in different tissues, loss of the LMAN1 cargo receptor leads to parallel reductions in both FV and FVIII activity. FV is synthesized in hepatocytes (as well as megakaryocytes in the mouse). However, the primary cellular source of FVIII biosynthesis is controversial, with contradictory evidence supporting an endothelial or hepatocyte origin. We took advantage of the dependence of efficient FV and FVIII secretion on LMAN1 to examine the cellular source of each protein. FV and FVIII secretion profiles of conditional Lman1 knockout mice were characterized, relative to that of wildtype mice and ubiquitous Lman1 null mice (Lman1-/-). In order to generate mice with Lman1 expression specifically deleted in the endothelium or the hepatocytes, either a Tie2-Cre or Albumin-Cre transgene was crossed into Lman1 conditional mice (Lman1fl). FV and FVIII activity levels were measured by functional coagulation activity assays. Though Lman1fl/fl/Tie2-Cre+ mice (endothelial-specific knockout) exhibit normal plasma FV activity (99.9%) relative to wildtype mice (set to 100%), FVIII activity is reduced to 53.5% (p < 2.5 x 10-6). In contrast, Lman1fl/fl/Alb-Cre+ (hepatocyte-specific knockout) mice demonstrate normal FVIII activity (89.0%) and reduced FV activity (37.0%) (p < 1.4 x 10-10). To confirm endothelial cells as the biosynthetic source of FVIII, we took advantage of the previously reported RiboTag mouse (Sanz et al., 2009. PNAS 106(33):13939-44) to isolate endothelial cell RNA for qPCR analysis from various murine tissues. RiboTag mice carry a hemaglutinin-tagged ribosomal protein that can be used for cell-type specific immunoprecipitation of polyribosomes and subsequent RNA analysis when crossed with a Cre-recombinase expressing animal. qPCR analyses of endothelial cell RNA isolated from total liver lysates of five RiboTag/Tie2-Cre+ mice demonstrated 10-20 fold enrichment for gene transcripts that are known to be endothelial-specific, such as Cdhs (12.1 fold enrichment, p < 8.0 x 10-3), Vcam1 (13.4 fold enrichment, p <1.1 x 10-5), and Vwf (15.3 fold enrichment, p < 7.0 x 10-4), as well as for FVIII transcripts (11.4 fold enrichment, p < 4.0 x 10-5). In contrast, this analysis demonstrated a statistically significant depletion (5-10 fold) of transcripts from many known hepatocyte-specific genes, including multiple coagulation factor genes. Similar examination of kidney endothelial cell RNA also demonstrated enrichment for FVIII transcripts, thereby demonstrating that endothelial cells from multiple tissues and vascular beds contribute to the plasma FVIII pool in the mouse. These results explain the successful reversal of hemophilia A by both liver and kidney transplants. Taken together, these results definitively demonstrate that endothelial cells are the primary source of FVIII biosynthesis in the mouse, and that hepatocytes make no significant contribution to the plasma FVIII pool. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2014 ◽  
Vol 123 (24) ◽  
pp. 3706-3713 ◽  
Author(s):  
Scot A. Fahs ◽  
Matthew T. Hille ◽  
Qizhen Shi ◽  
Hartmut Weiler ◽  
Robert R. Montgomery

Key Points Endothelial cells are the predominant (and possibly exclusive) source of coagulation factor VIII. Hepatocytes do not contribute to plasma FVIII production.


1988 ◽  
Vol 60 (02) ◽  
pp. 226-229 ◽  
Author(s):  
Jerome M Teitel ◽  
Hong-Yu Ni ◽  
John J Freedman ◽  
M Bernadette Garvey

SummarySome classical hemophiliacs have a paradoxical hemostatic response to prothrombin complex concentrate (PCC). We hypothesized that vascular endothelial cells (EC) may contribute to this “factor VIII bypassing activity”. When PCC were incubated with suspensions or monolayer cultures of EC, they acquired the ability to partially bypass the defect of factor VIII deficient plasma. This factor VIII bypassing activity distributed with EC and not with the supernatant PCC, and was not a general property of intravascular cells. The effect of PCC was even more dramatic on fixed EC monolayers, which became procoagulant after incubation with PCC. The time courses of association and dissociation of the PCC-derived factor VIII bypassing activity of fixed and viable EC monolayers were both rapid. We conclude that EC may provide a privileged site for sequestration of constituents of PCC which express coagulant activity and which bypass the abnormality of factor VIII deficient plasma.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Morisada Hayakawa ◽  
Asuka Sakata ◽  
Hiroko Hayakawa ◽  
Hikari Matsumoto ◽  
Takafumi Hiramoto ◽  
...  

AbstractCoagulation factors are produced from hepatocytes, whereas production of coagulation factor VIII (FVIII) from primary tissues and cell species is still controversial. Here, we tried to characterize primary FVIII-producing organ and cell species using genetically engineered mice, in which enhanced green fluorescent protein (EGFP) was expressed instead of the F8 gene. EGFP-positive FVIII-producing cells existed only in thin sinusoidal layer of the liver and characterized as CD31high, CD146high, and lymphatic vascular endothelial hyaluronan receptor 1 (Lyve1)+. EGFP-positive cells can be clearly distinguished from lymphatic endothelial cells in the expression profile of the podoplanin− and C-type lectin-like receptor-2 (CLEC-2)+. In embryogenesis, EGFP-positive cells began to emerge at E14.5 and subsequently increased according to liver maturation. Furthermore, plasma FVIII could be abolished by crossing F8 conditional deficient mice with Lyve1-Cre mice. In conclusion, in mice, FVIII is only produced from endothelial cells exhibiting CD31high, CD146high, Lyve1+, CLEC-2+, and podoplanin− in liver sinusoidal endothelial cells.


2003 ◽  
Vol 13 (3) ◽  
pp. 249-262 ◽  
Author(s):  
Michael Ho ◽  
Eugene Yang ◽  
George Matcuk ◽  
David Deng ◽  
Nick Sampas ◽  
...  

Vascular endothelial cells maintain the interface between the systemic circulation and soft tissues and mediate critical processes such as inflammation in a vascular bed-selective fashion. To expand our understanding of the genetic pathways that underlie these specific functions, we have focused on the identification of novel genes that are differentially expressed in all endothelial cells, as well as restricted groups of this cell type. Virtual subtraction was conducted employing gene expression data deposited in public databases and 384 genes identified.11 The microarray data derived through these experiments have been deposited in the GEO expression database at the NCBI and has been given the accession number GPL217 , with others pending. Primary data and supplementary material associated with this manuscript are being deposited at the following website: http://quertermous.stanford.edu . These genes were spotted on custom microarrays, along with 288 genes identified through subtraction cloning from TGF-β-stimulated endothelial cells. Arrays were evaluated with RNA samples representing endothelial cells cultured from four vascular sources and five non-endothelial cell types. These studies identified 64 pan-endothelial markers that were differentially expressed with at least a threefold difference (range 3- to 55-fold). In addition, differences in gene expression profiles among endothelial cells from different vascular beds were identified. Validation of these findings was performed by RNA blot expression studies, and a number of the novel genes were shown to be expressed under angiogenic conditions in the developing mouse embryo. The combined tools of database mining and transcriptional profiling thus provide expanded knowledge of endothelial cell gene expression and endothelial cell biology.


2020 ◽  
Author(s):  
Emmi Helle ◽  
Minna Ampuja ◽  
Alexandra Dainis ◽  
Laura Antola ◽  
Elina Temmes ◽  
...  

AbstractRationaleCell-cell interactions are crucial for the development and function of the organs. Endothelial cells act as essential regulators of tissue growth and regeneration. In the heart, endothelial cells engage in delicate bidirectional communication with cardiomyocytes. The mechanisms and mediators of this crosstalk are still poorly known. Furthermore, endothelial cells in vivo are exposed to blood flow and their phenotype is greatly affected by shear stress.ObjectiveWe aimed to elucidate how cardiomyocytes regulate the development of organotypic phenotype in endothelial cells. In addition, the effects of flow-induced shear stress on endothelial cell phenotype were studied.Methods and resultsHuman induced pluripotent stem cell (hiPSC) -derived cardiomyocytes and endothelial cells were grown either as a monoculture or as a coculture. hiPS-endothelial cells were exposed to flow using the Ibidi-pump system. Single-cell RNA sequencing was performed to define cell populations and to uncover the effects on their transcriptomic phenotypes. The hiPS-cardiomyocyte differentiation resulted in two distinct populations; atrial and ventricular. Coculture had a more pronounced effect on hiPS-endothelial cells compared to hiPS-cardiomyocytes. Coculture increased hiPS-endothelial cell expression of transcripts related to vascular development and maturation, cardiac development, and the expression of cardiac endothelial cell -specific genes. Exposure to flow significantly reprogrammed the hiPS-endothelial cell transcriptome, and surprisingly, promoted the appearance of both venous and arterial clusters.ConclusionsSingle-cell RNA sequencing revealed distinct atrial and ventricular cell populations in hiPS-cardiomyocytes, and arterial and venous-like cell populations in flow exposed hiPS-endothelial cells. hiPS-endothelial cells acquired cardiac endothelial cell identity in coculture. Our study demonstrated that hiPS-cardiomoycytes and hiPS-endothelial cells readily adapt to coculture and flow in a consistent and relevant manner, indicating that the methods used represent improved physiological cell culturing conditions that potentially are more relevant in disease modelling. In addition, novel cardiomyocyte-endothelial cell crosstalk mediators were revealed.


Blood ◽  
2017 ◽  
Vol 129 (4) ◽  
pp. 405-414 ◽  
Author(s):  
Susanna Canali ◽  
Kimberly B. Zumbrennen-Bullough ◽  
Amanda B. Core ◽  
Chia-Yu Wang ◽  
Manfred Nairz ◽  
...  

Key Points Endothelial Bmp6 conditional knockout mice exhibit hemochromatosis, whereas hepatocyte and macrophage Bmp6 conditional knockout mice do not. Our data support a model in which EC Bmp6 has paracrine actions on hepatocyte hemojuvelin to regulate hepcidin production.


Blood ◽  
2016 ◽  
Vol 128 (6) ◽  
pp. 862-865 ◽  
Author(s):  
David Stegner ◽  
Michael Popp ◽  
Viola Lorenz ◽  
Jacqueline K. Wax ◽  
J. Engelbert Gessner ◽  
...  

Key Points Antibody-induced shedding of platelet GPVI in vivo and the associated transient thrombocytopenia depend on liver sinusoidal endothelial cell-expressed FcγRIIB.


Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 27-27 ◽  
Author(s):  
Scot A. Fahs ◽  
Matthew T. Hille ◽  
Robert R. Montgomery

Abstract Definitively identifying the cells responsible for synthesis of coagulation factor VIII (F8) has proven to be a challenge. Transplantation studies demonstrate that as an organ liver is the major, but not exclusive source of plasma F8. Within the liver F8 expression has been variously attributed to hepatocytes, and/or liver sinusoidal endothelial cells, and/or Kupffer cells. Extrahepatic transcription of F8 mRNA appears to be nearly ubiquitous at a low level throughout the body. Previous studies have relied upon retrospective post-expression detection of F8 protein or mRNA using a variety of immunochemical, in situ, and cell isolation techniques, but continuing controversy speaks to the difficulties in localizing expression of a trace protein such as F8. We used a rather different, pre-emptive approach to address the question of F8 synthesis. We developed a conditional F8 knockout (KO) mouse model that allows inactivation of the F8 gene, thus preventing expression, in specific cell types. Exons 17/18 of the F8 gene were flanked by LoxP sites (floxed) resulting in their excision in cells expressing Cre recombinase. Tissue-specific Cre-expressing mouse strains were cross-bred with floxed (F8F) mice to generate tissue-specific F8-KO models. Embryonic Cre expression resulted in a new F8KOstrain displaying a severe hemophilia A phenotype. A hepatocyte-specific F8-KO has completely normal plasma F8 levels, while each of 3 endothelial cell (EC)-Cre models displays a reduced-F8 phenotype that correlates in severity with endothelial Cre efficiency. Presumably due to a shared hemangioblast progenitor, Cre is expressed with similar efficiency in both EC and hematopoietic cells in these models. Plasma F8 is undetectable in the most efficient EC-KO model. In contrast, a highly efficient hematopoietic F8-KO model presents with only modestly reduced F8 levels, likely due to off-target effects. RNA analysis revealed that the F8KO allele produces 2 alternatively spliced transcripts in roughly equivalent amounts. The 1st transcript represents the predicted exon 16/19 splicing event. In the 2nd transcript, 46bp at the 5’ end of intron 16 are retained due to the same cryptic splice site observed in the Kazazian exon 17-disrupted F8null model. Combined, the 2 F8KO allele transcripts are present at ∼1/8 to 1/5 of normal levels in the F8KO strain. No normal F8 transcripts are present. In the phenotypically normal hepatocyte-KO model ∼70% of total liver gDNA is converted to the F8KO allele, indicative of very efficient hepatocyte Cre activity, yet almost exclusively normal F8 mRNA is present, with only traces of F8KO message. This is consistent with endothelial synthesis as our further results indicate. For the 3 EC-KO models, plasma F8 levels were correlated with hepatic levels of normal F8 mRNA, and inversely correlated with F8KO transcripts. Excessive F8F to F8KOconversion in the hematopoietic-Cre model suggests variable loss of tissue-specificity. In the most efficient, functionally hemophilic EC-KO model, ∼20% of liver gDNA is converted to the F8KO allele, in good agreement with the expected number of hepatic EC, and F8KO mRNA is present at ∼10% of normal liver levels. With undetectable plasma F8, the continued production of normal F8 mRNA at a similar low level (∼10%) by the remaining 80% of Cre-negative, presumably non-endothelial hepatic cells, was unexpected. In addition to liver we found both normal and F8KO message only in kidney and perhaps brain. As expected, only F8KOmRNA was found in spleen and bone marrow, but the presence of exclusively normal mRNA in heart, intestine, testis, lung, and thymus, at relatively normal (low) levels, was surprising. The persistence of widespread transcriptional “expression” of F8, albeit in a functionally hemophilic mouse, is reminiscent of the near-ubiquitous presence of low level F8 transcription in normal mice. This low level transcription apparently does not support functional plasma F8 production, at least not in these EC-KO mice. In summary, our results support the hypothesis that synthesis of F8 is a function of endothelial cells, both in the liver and presumably elsewhere. Neither hepatocytes nor hematopoietic cells appear to contribute significantly to steady-state plasma F8 levels. Transcriptional analysis of normal and F8KO-specific transcripts provides further support for the localization of F8 expression to endothelial cells. Disclosures: No relevant conflicts of interest to declare.


1997 ◽  
Vol 273 (1) ◽  
pp. L275-L281 ◽  
Author(s):  
M. Geiger ◽  
A. Stone ◽  
S. N. Mason ◽  
K. T. Oldham ◽  
K. S. Guice

Phenotypic heterogeneity among endothelial cell populations may account for important organ-specific behaviors. Experimental evidence suggests that endothelium-derived nitric oxide mediates certain of these unique responses. The purpose of these investigations was to compare rat pulmonary microvascular endothelial cells with pulmonary artery and aortic macrovascular endothelial cells in their ability to generate nitric oxide (NO). Cultures of these microvascular and macrovascular endothelial cells were incubated with interferon-gamma (IFN-gamma), tumor necrosis factor-alpha (TNF-alpha), and Salmonella typhimurium lipopolysaccharide (LPS) alone or in combination, and nitrite production was measured. Single-agent exposure with IFN-gamma (up to 1,000 U/ml), TNF-alpha (up to 60,000 U/ml), or LPS (up to 500 ng/ml) had little effect on nitrite generation. Nitrite production by rat aortic macrovascular endothelial cells (RAEC) was significantly greater than that by the rat lung microvascular endothelial cells (RLMVEC) when stimulated with TNF-alpha + IFN-gamma, LPS + IFN-gamma, or TNF-alpha + LPS. The maximal response by all endothelial cell types (approximately 15-fold increase in RAEC and 8-fold increase in RLMVEC) was observed with LPS + IFN-gamma. The nitrite generation from rat pulmonary artery endothelial cells was intermediate between RAEC and RLMVEC responses when stimulated with IFN-gamma + LPS or TNF-alpha. Similar patterns of heterogeneous inducible nitric oxide synthase mRNA induction occurred when Northern analysis of specimens from the cultured endothelial cell types was done. These data suggest that phenotypic heterogeneity between these endothelial cell populations is substantial and, by inference, that site-specific NO. generation may occur.


Sign in / Sign up

Export Citation Format

Share Document