scholarly journals Maea expressed by macrophages, but not erythroblasts, maintains postnatal murine bone marrow erythroblastic islands

Blood ◽  
2019 ◽  
Vol 133 (11) ◽  
pp. 1222-1232 ◽  
Author(s):  
Qiaozhi Wei ◽  
Philip E. Boulais ◽  
Dachuan Zhang ◽  
Sandra Pinho ◽  
Masato Tanaka ◽  
...  

Abstract The erythroblastic island (EI), formed by a central macrophage and developing erythroblasts (EBs), was first described decades ago and was recently shown to play an in vivo role in homeostatic and pathological erythropoiesis. The exact molecular mechanisms, however, mediating the interactions between macrophages and EBs remain unclear. Macrophage-EB attacher (Maea) has previously been suggested to mediate homophilic adhesion bounds bridging macrophages and EBs. Maea-deficient mice die perinatally with anemia and defective erythrocyte enucleation, suggesting a critical role in fetal erythropoiesis. Here, we generated conditional knockout mouse models of Maea to assess its cellular and postnatal contributions. Deletion of Maea in macrophages using Csf1r-Cre or CD169-Cre caused severe reductions of bone marrow (BM) macrophages, EBs, and in vivo island formation, whereas its deletion in the erythroid lineage using Epor-Cre had no such phenotype, suggesting a dominant role of Maea in the macrophage for BM erythropoiesis. Interestingly, Maea deletion in spleen macrophages did not alter their numbers or functions. Postnatal Maea deletion using Mx1-Cre or function inhibition using a novel monoclonal antibody also impaired BM erythropoiesis. These results indicate that Maea contributes to adult BM erythropoiesis by regulating the maintenance of macrophages and their interaction with EBs via an as-yet-unidentified EB receptor.

2017 ◽  
Vol 2017 ◽  
pp. 1-11 ◽  
Author(s):  
Hua Yang ◽  
Mengjie Zhang ◽  
Jiahao Shi ◽  
Yunhe Zhou ◽  
Zhipeng Wan ◽  
...  

Several studies have associated reduced expression of synaptosomal-associated protein of 25 kDa (SNAP-25) with schizophrenia, yet little is known about its role in the illness. In this paper, a forebrain glutamatergic neuron-specific SNAP-25 knockout mouse model was constructed and studied to explore the possible pathogenetic role of SNAP-25 in schizophrenia. We showed that SNAP-25 conditional knockout (cKO) mice exhibited typical schizophrenia-like phenotype. A significantly elevated extracellular glutamate level was detected in the cerebral cortex of the mouse model. Compared with Ctrls, SNAP-25 was dramatically reduced by about 60% both in cytoplasm and in membrane fractions of cerebral cortex of cKOs, while the other two core members of SNARE complex: Syntaxin-1 (increased ~80%) and Vamp2 (increased ~96%) were significantly increased in cell membrane part. Riluzole, a glutamate release inhibitor, significantly attenuated the locomotor hyperactivity deficits in cKO mice. Our findings provide in vivo functional evidence showing a critical role of SNAP-25 dysfunction on synaptic transmission, which contributes to the developmental of schizophrenia. It is suggested that a SNAP-25 cKO mouse, a valuable model for schizophrenia, could address questions regarding presynaptic alterations that contribute to the etiopathophysiology of SZ and help to consummate the pre- and postsynaptic glutamatergic pathogenesis of the illness.


Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 1731-1731
Author(s):  
Vu H. Nguyen ◽  
Daisy Chang ◽  
Robert S. Negrin

Abstract CD4+CD25+ regulatory T cells (Treg) mediate alloresponses in murine models of bone marrow transplantation (BMT), leading to protection from graft-versus-host disease (GvHD). However, in vivo migration and tissue localization of Treg during this inflammatory response remain unclear. We previously demonstrated co-localization of Treg with effector T cells (Tcon) with initial expansion in secondary lymphoid organs prior to migration into inflamed tissues in a major MHC-mismatched BMT model. To explore the stimuli for Treg proliferation, we evaluated the role of the allogeneic environment by transferring FVB donor luciferase-expressing (luc+) Treg into lethally-irradiated syngeneic recipients. Unlike the allogeneic irradiated setting where Treg expand in the presence or absence of Tcon, adoptively transferred luc+ Treg were not detected in secondary lymphoid organs of syngeneic lethally-irradiated BMT recipients by in vivo bioluminescence imaging (BLI). Syngeneic luc+ Tcon also had significantly different in vivo dynamics, with a 4 day delay and only moderate expansion in lymph nodes. Proliferation was not detected in the spleen, unlike their allogeneic Tcon counterparts, nor in the bone marrow compartments, as seen in lymphopenic models. To assess whether irradiation induced the observed in vivo dynamics of Treg in the allogeneic setting, we transferred FVB luc+ Treg or luc+ Tcon into unirradiated Balb/c Rag2−/−gamma chain (γC) −/− recipients, which lack T, B, and NK cells. After adoptive transfer into Rag2−/−γC−/− recipients, robust Tcon proliferation was observed in secondary lymphoid organs and the bone marrow compartments; however, Treg expansion was weak, and specific localization to lymphoid or nonlymphoid tissues was not observed. Treg were stimulated to localize to and expand in secondary lymphoid organs by the co-transfer of Tcon in unirradiated Rag2−/− (γC) −/− or by conditioning Rag2−/− (γC) −/− recipients with irradiation. Exogenous IL2 administration two weeks following luc+ Treg transfer into unirradiated Rag2−/− (γC) −/− recipients similarly led to localization and expansion of Treg in secondary lymphoid organs. These studies indicate the critical role of proinflammatory cytokines, such as IL2, generated either by irradiation-induced tissue damage or donor Tcon, in the expansion and localization of Treg. Differences between Tcon and Treg expansion in syngeneic or unconditioned allogeneic Rag2−/− γC−/− hosts suggest an important role of conditioning with irradiation alone or in concert with the allogeneic environment, in providing distinct signals for Tcon versus Treg activation, proliferation, and localization.


Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 3469-3469
Author(s):  
Pratibha Singh ◽  
Seiji Fukuda ◽  
Janardhan Sampath ◽  
Louis M. Pelus

Abstract Interaction of CXCR4 expressed on hematopoietic stem and progenitor cells (HSPC) with bone-marrow stromal SDF-1 is believed to play a central role in retention or mobilization of HSPC. Recently, a mobilization regimen of G-CSF was shown to decrease osteoblast number resulting in reduced levels of bone-marrow SDF-1, however the detailed mechanism leading to this reduction is currently unknown. It is unlikely that G-CSF directly regulates osteoblast SDF-1 production since osteoblasts do not express G-CSF receptor. Proteolytic cleavage of SDF-1 by peptidase CD26 in the bone-marrow may be an alternative mechanism responsible for reduction of SDF-1 level. Although CD26 can cleave SDF-1 in vitro, direct evidence of SDF-1 cleavage by CD26 in vivo during G-CSF induced HSPC mobilization has not been demonstrated. We previously demonstrated that neutrophils are required for G-CSF induced HSPC mobilization and that CD26 expression on neutrophils, rather than HSPC, is critical for mobilization. To more fully understand the role of CD26 in altering SDF-1 protein/activity during G-CSF induced HSPC mobilization, we quantitated bone-marrow SDF-1 levels in CD26−/− and wild-type CD26+/+ mice by ELISA during G-CSF administration. A standard 4 day G-CSF mobilization regimen (100 μg/kg bid, sc × 4 days) decreased bone-marrow total SDF-1 from 4.55±0.3 to 0.52±0.06 ng/femur in wild-type CD26+/+ mice (8.7-fold) and from 4.51±0.3 to 0.53±0.05 ng/femur (8.5-fold) in CD26−/− mice. However, despite an equivalent decrease in SDF-1, total CFU mobilization and the absolute number of mobilized SKL cells were decreased (3.1 and 2.0 fold lower, respectively) in CD26−/− mice compared to wild-type CD26+/+ controls. These results suggest that the decrease in total SDF-1 level in marrow seen following G-CSF treatment is independent of CD26. Cytological examination of bone-marrow smears showed that the reduction in SDF-1 levels in bone-marrow of both wild-type CD26+/+ and CD26−/− mice following G-CSF administration correlated with an increase in total absolute bone-marrow neutrophil cell number, suggesting a role for neutrophils in modulation of SDF-1 protein. To determine if neutrophils affect osteoblast SDF-1 production, bone marrow Gr-1+ neutrophils from wild-type CD26+/+ and CD26−/− mice were purified using anti-Ly6G magnetic beads and co-cultured with MC3T3-E1 preosteoblasts in vitro. Gr-1+ neutrophils from both wild-type and CD26−/− mice decreased pre-osteoblast SDF-1 production by similar amounts (15.4-fold vs 14.8-fold respectively), while Gr-1 neg cells from both wild-type CD26+/+ or CD26−/− were without effect on SDF-1 levels. Similarly, Gr-1+ neutrophils from both wild-type and CD26−/− mice decreased SDF-1 produced by MC3T3-E1-derived osteoblasts from 1.85±0.3 to 0.52±0.06 ng/ml (3.5 fold) and 0.56±0.07 ng/ml (3.3 fold) respectively, with Gr-1neg cells having no effect. Gr-1+ neutrophils either from wild-type or CD26−/− mice, but not Gr-1neg cells, significantly induced apoptosis of MC3T3-E1 cells as measured by Annexin-V staining (70.5%±10.2 vs 71.2%±12.5 for wild-type CD26+/+ and CD26−/− neutrophils respectively) and significantly inhibited osteoblast activity (20-fold vs 20.6-fold for CD26+/+ and CD26−/− neutrophils respectively) as measured by osteocalcin expression. Furthermore, irrespective of G-CSF treatment, an inverse correlation between absolute neutrophil number and SDF-1 protein levels was observed, suggesting that G-CSF induces neutrophil expansion but does not directly affect SDF-1 production. Collectively, these results provide additional support for the critical role of neutrophils in G-CSF induced mobilization and strongly suggested that neutrophils directly regulate bone-marrow SDF-1 levels independent of CD26 activity.


Blood ◽  
2010 ◽  
Vol 116 (10) ◽  
pp. 1767-1775 ◽  
Author(s):  
Markus Bender ◽  
Anita Eckly ◽  
John H. Hartwig ◽  
Margitta Elvers ◽  
Irina Pleines ◽  
...  

Abstract The cellular and molecular mechanisms orchestrating the complex process by which bone marrow megakaryocytes form and release platelets remain poorly understood. Mature megakaryocytes generate long cytoplasmic extensions, proplatelets, which have the capacity to generate platelets. Although microtubules are the main structural component of proplatelets and microtubule sliding is known to drive proplatelet elongation, the role of actin dynamics in the process of platelet formation has remained elusive. Here, we tailored a mouse model lacking all ADF/n-cofilin–mediated actin dynamics in megakaryocytes to specifically elucidate the role of actin filament turnover in platelet formation. We demonstrate, for the first time, that in vivo actin filament turnover plays a critical role in the late stages of platelet formation from megakaryocytes and the proper sizing of platelets in the periphery. Our results provide the genetic proof that platelet production from megakaryocytes strictly requires dynamic changes in the actin cytoskeleton.


Blood ◽  
2011 ◽  
Vol 117 (7) ◽  
pp. 2211-2222 ◽  
Author(s):  
Shunsuke Kanada ◽  
Chiharu Nishiyama ◽  
Nobuhiro Nakano ◽  
Ryuyo Suzuki ◽  
Keiko Maeda ◽  
...  

Abstract In this study, we investigated the role of a transcription factor, PU.1, in the regulation of CD80 and CD86 expression in dendritic cells (DCs). A chromatin immunoprecipitation assay revealed that PU.1 is constitutively bound to the CD80 and CD86 promoters in bone marrow–derived DCs. In addition, co-expression of PU.1 resulted in the transactivation of the CD80 and CD86 promoters in a reporter assay. The binding of PU.1 to cis-enhancing regions was confirmed by electromobility gel-shift assay. As expected, inhibition of PU.1 expression by short interfering RNA (siRNA) in bone marrow–derived DCs resulted in marked down-regulation of CD80 and CD86 expression. Moreover, overexpression of PU.1 in murine bone marrow–derived lineage-negative cells induced the expression of CD80 and CD86 in the absence of monocyte/DC-related growth factors and/or cytokines. Based on these results, we conclude that PU.1 is a critical factor for the expression of CD80 and CD86. We also found that subcutaneous injection of PU.1 siRNA or topical application of a cream-emulsified PU.1 siRNA efficiently inhibited murine contact hypersensitivity. Our results suggest that PU.1 is a potential target for the treatment of immune-related diseases.


2020 ◽  
Author(s):  
Shengdong Luo ◽  
Zhihui Sun ◽  
Huahao Fan ◽  
Shanshan Lu ◽  
Yan Hu ◽  
...  

AbstractCoxiella burnetii carries a large conserved plasmid or plasmid-like chromosomally integrated sequence of unknown function. Here we report the curing of QpH1 plasmid from C. burnetii Nine Mile phase II, the characterization of QpH1-deficient C. burnetii in in vitro and in vivo infection models, and the characterization of plasmid biology. A shuttle vector pQGK, which is composed of the CBUA0036-0039a region (predicted for QpH1 maintenance), an E. coli plasmid ori, eGFP and kanamycin resistance genes was constructed. The pQGK vector can be stably transformed into Nine Mile II and maintained at a similar low copy like QpH1. Importantly, transformation with pQGK cured the endogenous QpH1 due to plasmid incompatibility. Compared to a Nine Mile II transformant of a RSF1010-based vector, the pQGK transformant shows an identical one-step growth curve in axenic media, a similar growth curve in Buffalo green monkey kidney cells, an evident growth defect in macrophage-like THP-1 cells, and dramatically reduced ability of colonizing bone marrow-derived murine macrophages. In the SCID mouse infection model, the pQGK transformants caused a lesser extent of splenomegaly. Moreover, the plasmid biology was investigated by mutagenesis. We found CBUA0037-0039 are essential for plasmid maintenance, and CBUA0037-0038 account for plasmid compatibility. Taken together, our data suggest that QpH1 encodes factor(s) essential for colonizing murine macrophages, and to a lesser extent for colonizing human macrophages. This study highlights a critical role of QpH1 for C. burnetii persistence in rodents, and expands the toolkit for genetic studies in C. burnetii.Author summaryIt is postulated that C. burnetii recently evolved from an inherited symbiont of ticks by the acquisition of novel virulence factors. All C. burnetii isolates carry a large plasmid or have a chromosomally integrated plasmid-like sequence. The plasmid is a candidate virulence factor that contributes to C. burnetii evolution. Here we describe the construction of novel shuttle vectors that allow to make plasmid-deficient C. burnetii mutants. With this plasmid-curing approach, we characterized the role of the QpH1 plasmid in in vitro and in vivo C. burnetii infection models. We found that the plasmid plays a critical role for C. burnetii growth in macrophages, especially in murine macrophages, but not in axenic media and BGMK cells. Our work highlights an essential role of the plasmid for the acquisition of colonizing capability in rodents by C. burnetii. This study represents a major step toward unravelling the mystery of the C. burnetii cryptic plasmids.


Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 1630-1630
Author(s):  
Robert B. Lorsbach ◽  
Yoon-Sang Kim ◽  
Jennifer Moore ◽  
Hope Smith-Sielicki ◽  
Tiffany M. Jones ◽  
...  

Abstract Hem1 is a hematopoietic specific member of the HEM family proteins, which have been identified as components of the WAVE regulatory complex. To further characterize the role of Hem1 in hematopoietic cell function, we have generated mice deficient in Hem1 using gene targeting methodology. Hem1-deficient mice manifest several phenotypic abnormalities, including peripheral blood lymphopenia and neutrophilia, splenomegaly, premature mortality, and with variable penetrance thymic hypoplasia and alopecia. Flow cytometric analysis of peripheral blood and spleen demonstrated that Hem1−/ − mice have a marked reduction in peripheral B cells, changes that were evident in both adult and neonatal mice; the splenomegaly in Hem1−/ − mice was attributable to increased extramedullary hematopoiesis. The frequency of bone marrow B cell progenitors was also markedly reduced in Hem1−/ − mice. To assess the role of Hem1 in hematopoietic stem cell (HSC) function, competitive bone marrow transplantation assays were performed. In contrast to wild-type HSCs, Hem1-deficient HSCs had poor competitive repopulating activity in irradiated recipient mice. KSL cell analysis demonstrated no significant difference in the frequency of lin-c-kit+Sca1+ HSCs between wild-type and Hem1−/ − bone marrow, suggesting that the defective competitive repopulating activity of Hem1−/ − HSCs is attributable to defective bone marrow homing or stem cell niche interaction. Given the biochemical evidence implicating the HEM proteins as a component of the WAVE regulatory complex, we also assessed the ability of Hem1-deficient leukocytes to undergo cytoskeletal remodeling in vitro. Using a transwell assay, Hem1−/ − bone marrow storage pool neutrophils demonstrated markedly blunted chemotactic responses to formylated peptide which was attributable to defective f-actin formation. Hem1−/ − peripheral CD4+ T cells similarly manifested chemotactic defects in response to SDF-1, and showed blunted proliferation when stimulated with antibodies against CD3 and CD28. Finally, a model of Streptococcus pneumoniae infection was employed to test the role of Hem1 in the in vivo function of neutrophils. Hem1−/ − mice were dramatically more sensitive to S. pneumoniae than wild-type littermates, as manifested by the inability to eliminate S. pneumoniae organisms in vivo and higher mortality. In summary, Hem1 deficiency results in deficiencies and functional defects in multiple hematopoietic lineages due to defective signaling to the actin cytoskeleton, and importantly, Hem1 plays a critical role in innate immunity to S. pneumoniae in vivo.


Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 1801-1801
Author(s):  
Katia Beider ◽  
Amnon Peled ◽  
Lola Weiss ◽  
Merav Leiba ◽  
Avichai Shimoni ◽  
...  

Abstract Abstract 1801 Background: Multiple myeloma (MM) is by large incurable neoplasm of plasma cells, characterized by accumulation in the bone marrow (BM), in close contact to cellular and extracellular matrix (ECM) components. Chemokine receptor CXCR4 is expressed by the majority of patients' MM cells. It promotes myeloma cell migration and homing to the BM compartment, supports the tumor cells survival and protects the myeloma cells from chemotherapy-induced apoptosis. Further investigation is required to define the specific molecular mechanisms regulated by the CXCR4/CXCL12 axis in MM. However, surface CXCR4 is commonly down-regulated in the MM cell lines. In order to overcome this limitation, the aim of the current study was to produce a reliable model for studying the functional role of high CXCR4 in MM by generating MM cell lines with stable expression of surface CXCR4. Results: To over-express CXCR4, we transduced CXCL12-expressing MM cell lines ARH77 and RPMI8226 with lentiviral vector and generated cell lines with high and stable levels of surface CXCR4. Enhanced CXCR4 expression significantly increased the in vitro survival and growth of the 2 MM cell lines in serum-deprivation conditions (p<0.01). Furthermore, elevated expression of surface CXCR4 prominently increased MM cells motility and promoted CXCL12-dependent transwell migration of the transduced MM cell lines. Highly CXCR4-expressing RPMI8226 and ARH77 cells demonstrated 40% migration in response to CXCL12 (50 ng/ml), versus only 0–5% migration of MM cells with low expression of surface CXCR4 (p<0.01). Furthermore, adhesion of MM cells to either ECM proteins or BMSCs localize the malignant PCs within the BM microenvironment, promote growth and survival of MM cells and play a critical role in myeloma bone disease and tumor invasion. In accordance, we observed induced adhesion of the transfected RPMI8226-CXCR4 cells to ECM components fibronectin and laminin and to BM fibroblasts. Moreover, we found that enhanced CXCR4 not only functionally activates, but rather significantly elevates the surface levels of VLA-4 integrin on the RPMI8226 cells. In addition, we found that CXCR4-expressing MM cells were less sensitive to melphalan- and bortezomib-induced apoptosis, when they were co-cultured with BM fibroblasts. Testing the molecular signaling pathways regulated by CXCR4, we found that elevated CXCR4 increased the basic level of pERK1/2 and pAKT in the MM cells, and promoted their prolonged activation in response to CXCL12 stimulation. Finally, the ability to produce colonies in the soft agar semi-solid culture reflects the tumorigenic capacity of cancer cells and cancer stem cells. Differentiated MM cells thus rarely produce colonies in soft agar. Here, we demonstrate that up regulation of CXCR4 promoted ARH77 and RPMI8226 colony formation, significantly increasing colonies number and size. Lastly, we determined the role of CXCR4 in MM tumor development in vivo. CXCR4-expressing ARH77 and RPMI8226 cells were subcutaneously injected into NOD/SCID mice. CXCR4-expressing cells, but not parental cell lines, produced detectable tumors already 10 days after the injection. Rapid tumor growth was further observed in both CXCR4-expressing cell lines. These findings indicate that CXCR4 provided aggressive phenotype and supported MM growth in vivo. Conclusions: Taken together, our findings clearly demonstrate the important pathophysiologic role of CXCR4 in MM development and progression. Furthermore, for the first time, we provide the evidence for CXCR4 oncogenic potential in MM, showing that CXCR4 promotes the clonogenic growth of MM cells. Our model may further serve to elucidate CXCR4-regulated molecular events potentially involved in the pathogenesis of MM, and strongly support targeting CXCR4 as therapeutic tool in MM. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. 2565-2565
Author(s):  
Eun Ji Gang ◽  
Yao-Te Hsieh ◽  
Huimin Geng ◽  
Jennifer Pham ◽  
Markus Muschen ◽  
...  

Abstract Abstract 2565 Chemotherapy drug resistance in acute lymphoblastic leukemia (ALL) remains a major problem, resulting in reduced treatment efficacy and relapse. The bone marrow environment (BME) has been shown to promote resistance of leukemia cells towards chemotherapy, which has been attributed to several proteins, including integrins. Our analysis of 207 children with high-risk (BCR/ABL1−) pre-B ALL revealed that high expression of the laminin-binding integrin VLA6 (alpha6beta1) portends poor clinical outcomes in patients with minimal residual disease (MRD+) on day 29 of induction. In addition, our comparative analysis of pre-B leukemia and normal B-cells revealed that VLA6 is preferentially upregulated on BCR/ABL1+ pre-B ALL blasts. Alterations in adhesion properties have been described for BCR/ABL1+ (p210) chronic myeloid leukemia. The role of integrins and integrin VLA6 in particular for cell adhesion-mediated drug resistance (CAM-DR) in BCR/ABL1+ (p210) ALL has not been addressed. With respect to its role for normal immature hematopoietic cells, contradictory observations have been reported. Therefore, we hypothesized that VLA6-mediated adhesion of ALL cells to the bone marrow stromal niche contributes to drug resistance. We evaluated the role of VLA6 in BCR-ABL1+ leukemia using two of our established models of leukemia, a conditional knockout model of VLA6 in murine BCR-ABL1+ leukemia and a xenograft model of human BCR-ABL1+ leukemia. VLA6fl/fl cells were oncogenically transformed using BCR-ABL1 (p210) and cultured under lymphoid-skewing conditions. Induction of pre- B (B220+ CD19+) ALL was confirmed by flow cytometry. Subsequent transduction with CreERT2 or EmptyERT2 generated leukemia cells in which VLA6 ablation could be induced (CreERT2) or not (EmptyERT2) by addition of Tamoxifen. Conditional ablation of VLA6 in vitro decreased adhesion significantly compared to undeleted controls (19.7%±8.1% vs. 87.7%±6.0%; p=0.00041) and increased apoptosis of murine BCR-ABL1+ leukemia cells as determined by analysis of Annexin V−/7-AAD− viable cells by flow cytometry (VLA6 deleted vs. undeleted: 35.3%±1.1% vs. 75.1%±1.2%; p=0.0001). Moreover, VLA6 deletion sensitized murine ALL to a tyrosine kinase inhibitor (TKI), Nilotinib (p=0.022, 45.6%±2.4% vs. 73.3%±13.0%). To test the effect of VLA6 deletion on leukemic progression in vivo, VLA6 BCR/ABL1+ pre-B (B220+ CD19+) CreERT2+ or control transduced ALL cells were transferred into NOD/SCID mice. 3 days thereafter, VLA6 deletion was induced by Tamoxifen administration to all animals in 2 cycles for 5 days. In vivo deletion of VLA6 in delayed leukemia progression compared to VLA6 competent controls from a median survival time (MST) of 30 days post-leukemia injection to a MST of 43 days post-leukemia injection (p=0.008 Log-rank test). In vivo deletion of VLA6 in combination with Nilotinib treatment delayed leukemia progression compared to VLA6 competent, as Nilotinib-treated control animals have uniformly died of leukemia with a MST of 39.5 days, however the Nilotinib treated VLA6 deleted group is completely alive and is still being monitored (p=0.0025). When VLA6 was ablated before transfer and recipients were observed for leukemia progression, the recipients of VLA6–deficient murine leukemia cells also showed attenuated leukemia progression compared to recipients of VLA6 competent cells. Moreover, we show that VLA6 blockade de-adheres primary ALL cells from their cognate counter receptor laminin in vitro, and sensitizes primary ALL cells to TKI Taken together, modulating the function of VLA6 in ALL offers a new approach to overcome drug resistance in ALL. Given that VLA6 is probably largely redundant for normal immature hematopoiesis, this approach may be preferable over targeting of other integrins in BCR/ABL1+ leukemias on which VLA6 is expressed. Disclosures: No relevant conflicts of interest to declare.


2019 ◽  
Vol 12 (1) ◽  
Author(s):  
Rabindranath Bera ◽  
Ming-Chun Chiu ◽  
Ying-Jung Huang ◽  
Tung-Huei Lin ◽  
Ming-Chung Kuo ◽  
...  

Abstract Background Additional sex combs-like 1 (ASXL1) mutations have been described in all forms of myeloid neoplasms including chronic myelomonocytic leukemia (CMML) and associated with inferior outcomes, yet the molecular pathogenesis of ASXL1 mutations (ASXL1-MT) remains poorly understood. Transformation of CMML to secondary AML (sAML) is one of the leading causes of death in CMML patients. Previously, we observed that transcription factor RUNX1 mutations (RUNX1-MT) coexisted with ASXL1-MT in CMML and at myeloid blast phase of chronic myeloid leukemia. The contribution of RUNX1 mutations in the pathogenesis of myeloid transformation in ASXL1-mutated leukemia, however, remains unclear. Methods To evaluate the leukemogenic role of RUNX1-MT in ASXL1-mutated cells, we co-expressed RUNX1-MT (R135T) and ASXL1-MT (R693X) in different cell lines and performed immunoblot, co-immunoprecipitation, gene expression microarray, quantitative RT-PCR, cell proliferation, differentiation, and clonogenic assays for in vitro functional analyses. The in vivo effect was investigated using the C57BL/6 mouse bone marrow transplantation (BMT) model. Results Co-expression of two mutant genes increased myeloid stem cells in animal model, suggesting that cooperation of RUNX1 and ASXL1 mutations played a critical role in leukemia transformation. The expression of RUNX1 mutant in ASXL1-mutated myeloid cells augmented proliferation, blocked differentiation, and increased self-renewal activity. At 9 months post-BMT, mice harboring combined RUNX1 and ASXL1 mutations developed disease characterized by marked splenomegaly, hepatomegaly, and leukocytosis with a shorter latency. Mice transduced with both ASXL1 and RUNX1 mutations enhanced inhibitor of DNA binding 1 (ID1) expression in the spleen, liver, and bone marrow cells. Bone marrow samples from CMML showed that ID1 overexpressed in coexisted mutations of RUNX1 and ASXL1 compared to normal control and either RUNX1-MT or ASXL1-MT samples. Moreover, the RUNX1 mutant protein was more stable than WT and increased HIF1-α and its target ID1 gene expression in ASXL1 mutant cells. Conclusion The present study demonstrated the biological and functional evidence for the critical role of RUNX1-MT in ASXL1-mutated leukemia in the pathogenesis of myeloid malignancies.


Sign in / Sign up

Export Citation Format

Share Document