scholarly journals Activating NOTCH1 Mutations Alter T-ALL Chemosensitivity By PREX2-AKT Pathway

Blood ◽  
2020 ◽  
Vol 136 (Supplement 1) ◽  
pp. 46-47
Author(s):  
Hui Yu ◽  
Yuxin DU ◽  
Ji Xu ◽  
Zhenchang Sun ◽  
Xiaorui Fu ◽  
...  

Mutations on NOTCH1 gene are the most commonly found mutations in T-cell acute lymphoblastic leukemia (T-ALL) and they are reported to be favorable indicators for T-ALL patients' prognosis. However, the effects of activating NOTCH1 mutations on T-ALL's chemosensitivity have not been studied. We reported that NOTCH1 inhibition by γ-secretase inhibitors or shRNA knockdown in MOLT-3 cells could reduce the T-ALL cells' sensitivity to chemotherapeutic drugs. However, this effect was absent in Jurkat and CUTLL cells. We further demonstrated that NOTCH1 inhibition could activate the PI3K-AKT pathway in a cell specific pattern similar as their effects on chemosensitivity. RNA-seq revealed that Phosphatidylinositol-3,4,5-Trisphosphate Dependent Rac Exchange Factor 2 (PREX2) is a target gene of NOTCH1 and may mediate the effects of activating NOTCH1 mutations on chemosensitivity. Consistently, we proved that overexpression of PREX2 could mimic the effects of NOTCH1 inhibition on chemosensitivity. Our study has highlighted the effects of activating NOTCH1 mutations on T-ALL's chemosensitivity by altering PREX2-AKT pathway, which may explain the favorable effects of NOTCH1 mutations on T-ALL patients' prognosis, as well as provided potential targets to alter T-ALL cells' chemosensitivity. Disclosures No relevant conflicts of interest to declare.

Blood ◽  
2015 ◽  
Vol 126 (23) ◽  
pp. 1300-1300
Author(s):  
Zheng Ge ◽  
Min Li ◽  
Lichan Xiao ◽  
Run Zhang ◽  
Jianyong Li

Abstract Objective: T-cell acute lymphoblastic leukemia (T-ALL) is caused by collaboration of multiple genetic abnormalities in the transformation of T-cell progenitors. PHF6 is founded as a new key tumor suppressor and mutated in T-ALL. The clinical significance of PHF6 mutations has not been fully determined in adult T-ALL. This study aimed to screen the PHF6 mutations in adult T-ALL and explore the associations of PHF6 mutations with other genetic lesions, as well as their clinical relevance in adult T-ALL patients. Methods: We amplified the exons of PHF6, NOTCH1, FBXW7, PTEN and JAK1 following by DNA sequencing to identify the genomic mutations and examined the PHF6 mRNA level by qPCR in adult T-ALL patients. We also analyzed the correlations of PHF6 and NOTCH1 mutations with clinical features using a χ2 test and survival curve using the Kaplan-Meier method. Results: The 27.1% (16/59) PHF6 mutations including 10 novel mutations were detected in Chinese adult T-ALL. Six of 16 (37.5%) were frame-shift mutations, which could result in the deletion of the protein. We also observed PHF6 expression was significantly lower in T-ALL patients with PHF6 mutations compared with wide type cases (0.00423 vs. 0.06464, P=0.035) , indicating PHF6 mutations could be loss of function. Moreover, PHF6 mutation was significantly associated with NOTCH1 mutation(P=0.035). We further analyzed the domains involving co-existence mutations of NOTCH1 with PHF6. The most commonly mutated domains in NOTCH1 co-existed with PHF6 were HD-N only 6/12 (50.0%), followed by HD-C only 2/12(16.7%), PEST only 2/12(16.7%), HD-C+PEST 1/12(8.3%) and HD-N+HD-C 1/12(8.3%), indicating that HD domain (especially HD-N) of NOTCH1 may contribute to the synergistic effect on oncogenesis of the two genes. Furthermore, the patients with co-existence of PHF6 and NOTCH1 mutations had lower hemoglobin and higher incidence of splenomegaly or lymphadenopathy compared to that without co-existence of the mutations (95.0 vs 122.0, P=0.007; 81.8% vs 38.3%, P=0.009; 90.9% vs 44.7%, P=0.006). Importantly, the patients with co-existence of mutations in PHF6 and NOTCH1 (PHF6mutNOTCH1mut) had significant shorter event-free survival (EFS) compared with that without co-existence (non-PHF6mutNOTCH1mut)(2.0 months vs. 12.0 months, P=0.027). Conclusion: PHF6 is inactivated in T-ALL due to its low expression and mutations. PHF6 mutation is co-existed with NOTCH1 mutations, and the patients with PHF6mutNOTCH1mut had a poor prognosis. Our results indicated synergistic effect of PHF6 and NOTCH1 mutations on leukemogenesis and PHF6mutNOTCH1mut may be potential prognostic marker in adult T-ALL. Disclosures No relevant conflicts of interest to declare.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Shuiyan Wu ◽  
You Jiang ◽  
Yi Hong ◽  
Xinran Chu ◽  
Zimu Zhang ◽  
...  

Abstract Background T-cell acute lymphoblastic leukemia (T-ALL) is an aggressive disease with a high risk of induction failure and poor outcomes, with relapse due to drug resistance. Recent studies show that bromodomains and extra-terminal (BET) protein inhibitors are promising anti-cancer agents. ARV-825, comprising a BET inhibitor conjugated with cereblon ligand, was recently developed to attenuate the growth of multiple tumors in vitro and in vivo. However, the functional and molecular mechanisms of ARV-825 in T-ALL remain unclear. This study aimed to investigate the therapeutic efficacy and potential mechanism of ARV-825 in T-ALL. Methods Expression of the BRD4 were determined in pediatric T-ALL samples and differential gene expression after ARV-825 treatment was explored by RNA-seq and quantitative reverse transcription-polymerase chain reaction. T-ALL cell viability was measured by CCK8 assay after ARV-825 administration. Cell cycle was analyzed by propidium iodide (PI) staining and apoptosis was assessed by Annexin V/PI staining. BRD4, BRD3 and BRD2 proteins were detected by western blot in cells treated with ARV-825. The effect of ARV-825 on T-ALL cells was analyzed in vivo. The functional and molecular pathways involved in ARV-825 treatment of T-ALL were verified by western blot and chromatin immunoprecipitation (ChIP). Results BRD4 expression was higher in pediatric T-ALL samples compared with T-cells from healthy donors. High BRD4 expression indicated a poor outcome. ARV-825 suppressed cell proliferation in vitro by arresting the cell cycle and inducing apoptosis, with elevated poly-ADP ribose polymerase and cleaved caspase 3. BRD4, BRD3, and BRD2 were degraded in line with reduced cereblon expression in T-ALL cells. ARV-825 had a lower IC50 in T-ALL cells compared with JQ1, dBET1 and OTX015. ARV-825 perturbed the H3K27Ac-Myc pathway and reduced c-Myc protein levels in T-ALL cells according to RNA-seq and ChIP. In the T-ALL xenograft model, ARV-825 significantly reduced tumor growth and led to the dysregulation of Ki67 and cleaved caspase 3. Moreover, ARV-825 inhibited cell proliferation by depleting BET and c-Myc proteins in vitro and in vivo. Conclusions BRD4 indicates a poor prognosis in T-ALL. The BRD4 degrader ARV-825 can effectively suppress the proliferation and promote apoptosis of T-ALL cells via BET protein depletion and c-Myc inhibition, thus providing a new strategy for the treatment of T-ALL.


2021 ◽  
Vol 22 (5) ◽  
pp. 2683
Author(s):  
Princess D. Rodriguez ◽  
Hana Paculova ◽  
Sophie Kogut ◽  
Jessica Heath ◽  
Hilde Schjerven ◽  
...  

Non-coding RNAs (ncRNAs) comprise a diverse class of non-protein coding transcripts that regulate critical cellular processes associated with cancer. Advances in RNA-sequencing (RNA-Seq) have led to the characterization of non-coding RNA expression across different types of human cancers. Through comprehensive RNA-Seq profiling, a growing number of studies demonstrate that ncRNAs, including long non-coding RNA (lncRNAs) and microRNAs (miRNA), play central roles in progenitor B-cell acute lymphoblastic leukemia (B-ALL) pathogenesis. Furthermore, due to their central roles in cellular homeostasis and their potential as biomarkers, the study of ncRNAs continues to provide new insight into the molecular mechanisms of B-ALL. This article reviews the ncRNA signatures reported for all B-ALL subtypes, focusing on technological developments in transcriptome profiling and recently discovered examples of ncRNAs with biologic and therapeutic relevance in B-ALL.


Blood ◽  
2016 ◽  
Vol 128 (22) ◽  
pp. 5197-5197
Author(s):  
Niroshaathevi Arumuggam ◽  
Nicole Melong ◽  
Catherine K.L. Too ◽  
Jason N. Berman ◽  
H.P. Vasantha Rupasinghe

Abstract T-cell acute lymphoblastic leukemia (T-ALL) is an aggressive malignant disease that accounts for about 15% of pediatric and 25% of adult ALL. Although risk stratification has provided more tailored therapy and improved the overall survival of T-ALL patients, clinical challenges such as suboptimal drug responses, morbidity from drug toxicities, and drug resistance still exist. Plant polyphenols have therapeutic efficacy as pharmacological adjuvants to help overcome these challenges. They can be acylated with fatty acids to overcome issues concerning bioavailability, such as poor intestinal absorption and low metabolic stability. Phloridzin (PZ), a flavonoid found in apple peels, was acylated with an omega-3 fatty acid, docosahexaenoic acid (DHA), to generate a novel ester called phloridzin docosahexaenoate (PZ-DHA). The cytotoxic effect of PZ-DHA was studied in the human Jurkat T-ALL cell line. PZ-DHA significantly reduced the viability and cellular ATP levels of treated cells. PZ-DHA was found to selectively induce apoptosis in Jurkat cells, while sparing normal murine T-cells. Apoptosis was further confirmed by demonstrating the ability of PZ-DHA to induce morphological alterations, DNA fragmentation, caspase activation, and the release of intracellular lactate dehydrogenase. PZ-DHA also significantly inhibited cell division in Jurkat cells. Furthermore, interferon-α-induced phosphorylation of the transcription factor, STAT3, was downregulated following PZ-DHA treatment. The in vitro efficacy of PZ-DHA was recapitulated in vivo in an established zebrafish xenograft model, where the proliferation of transplanted Jurkat cells was inhibited when PZ-DHA was added to the embryo water. Overall, these findings provide evidence for PZ-DHA as a novel therapeutic agent with activity in T-ALL. Studies examining the effect of PZ-DHA on patient-derived ALL cells engrafted in zebrafish are currently underway. Disclosures No relevant conflicts of interest to declare.


Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 2539-2539
Author(s):  
Min Wei ◽  
Jessica Blackburn

The tyrosine protein tyrosine phosphatase PTP4A3 has been extensively reported to play a causative role in numerous cancers, including several types of acute leukemia. We found PTP4A3 to be highly expressed in T-cell Acute Lymphoblastic Leukemia samples, and show that PTP4A3 accelerates T-ALL onset and increases the invasive ability of T-ALL cells in a zebrafish model, and is required for T-ALL engraftment and progression in mouse xenograft. Our in vitro studies showed that PTP43A3 enhances T-ALL migration, in part via modulation of SRC signaling. However, whether SRC is a direct substrate of PTP4A3, and whether the phosphatase activity of PTP4A3 actually plays a role in T-ALL or other types of leukemia progression is unknown and remains a major question in the field. We used a BioID-based proximity labeling approach combined with PTP4A3 substrate trapping mutant pull down assay to capture the PTP4A3 substrates candidates. BioID, a biotin ligase, was fused to PTP4A3 to generate a Biotin-PTP4A3 (BP) fusion protein. The overexpression of BP in T-ALL cell lines led to biotin modification of 288 PTP4A3 proximal proteins, including the potential direct PTP4A3 substrates. PANTHER pathway analysis showed that PTP4A3 interacting proteins are largely clustered in the T-cell activation, PDGF signaling, and angiogenesis. We are in process of validating potential substrates using immunoprecipitation and phosphoenrichement assays. Finally, we are using a novel zebrafish Myc+PTP4A3 induced T-ALL model to assess the function of PTP4A3 in leukemia progression. We have created several PTP4A3 protein mutants, including a phosphatase-dead mutant, a mutant unable to bind magnesium transporter, and a prenylation deficient mutant, and are in process of assessing the effects of these mutants in T-ALL onset and progression in our in vivo model. In total, these studies will allow us to better understand function of PTP4A3 in T-ALL progression, and may provide a strong rationale for the development of PTP4A3 inhibitors for use in leukemia. Disclosures No relevant conflicts of interest to declare.


Author(s):  
Yunqiu Pu ◽  
Fengxia Sun ◽  
Rongli Sun ◽  
Zhaodi Man ◽  
Shuangbin Ji ◽  
...  

Benzene, a commonly used chemical, has been confirmed to specifically affect the hematopoietic system as well as overall human health. PTP4A3 is overexpressed in leukemia cells and is related to cell proliferation. We previously found that HIF-1alpha was involved in benzene toxicity and PTP4A3 may be the target gene of HIF-1alpha via ChIP-seq. The aim of this study is to confirm the relationship between HIF-1alpha and PTP4A3 in benzene toxicity, as well as the function of PTP4A3 on cell toxicity induced by 1,4-benzoquinone (1,4-BQ). Our results indicate that HIF-1alpha could regulate PTP4A3 with in vivo and in vitro experiments. A cell line with suppressed PTP4A3 was established to investigate the function of PTP4A3 in 1,4-BQ toxicity in vitro. The results revealed that cell proliferation inhibition was more aggravated in PTP4A3 low-expression cells than in the control cells after 1,4-BQ treatment. The relative oxygen species (ROS) significantly increased in cells with inhibited PTP4A3, while the rise was inferior to the control cells at the 20 μM 1,4-BQ group. An increase in DNA damage was seen in PTP4A3 down-regulated cells at the 10 μM 1,4-BQ group, whereas the results reversed at the concentration of 20 μM. Moreover, the apoptosis rate increased higher in down-regulated PTP4A3 cells after 1,4-BQ exposure. In addition, PI3K/AKT pathway was significantly restrained in cells with inhibited PTP4A3 after 1,4-BQ treatment. Our results indicate that HIF-1alpha may regulate PTP4A3 to be involved in benzene toxicity. Inhibition of PTP4A3 could aggravate cell proliferation suppression and apoptosis by regulating PI3K/AKT pathway after 1,4-BQ treatment.


Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. 7-7
Author(s):  
Mark Y Chiang ◽  
M. Eden Childs ◽  
Candice Romany ◽  
Olga Shestova ◽  
Jon Aster ◽  
...  

Abstract Abstract 7 Notch signaling is activated in ∼70% of human T-cell acute lymphoblastic leukemia/lymphoma (T-ALL) samples and many human and mouse T-ALL cell lines require Notch signals for growth and survival. To gain insight into the role of Notch during induction of T-ALL, we used a fully penetrant, conditional, transgenic KrasG12D mouse model in which ∼80% of T-ALLs acquire activating Notch1 mutations in the endogenous locus. We crossed mice bearing this transgene with Rosa26-DNMAMLf/f mice, which conditionally express the pan-Notch inhibitor DNMAML. T-ALL developed in these mice despite the expression of DNMAML throughout T-cell development. ∼75% of T-ALL tumors acquired activating Notch1 mutations and suppressed expression of DNMAML, which is consistent with frequent “escape” of Notch from inhibition for efficient T-ALL development. We next compared T-ALL cells that lacked DNMAML expression with T-ALL cells that continued to express DNMAML. T-ALL cells lacking DNMAML expressed the direct Notch target c-Myc at higher levels, proliferated at a higher rate, and contained ∼10-fold higher levels of leukemia-initiating cells. Moreover, DNMAML-positive T-ALLs lost DNMAML after transfer into secondary recipients. These data underscore the strong selective pressure for Notch signals during generation and maintenance of T-ALL. We next sought a mechanistic answer for the strong selective pressure for Notch activation. c-Myc and Akt have both been posited to be critical targets of oncogenic Notch signals. To compare the relative contributions of c-Myc and Akt to lymphomagenesis, we overexpressed c-Myc and activated AKT in the KrasG12D-driven mouse model. T-ALLs induced by KrasG12D and Akt acquired activating Notch1 mutations in ∼70% of tumors, which were sensitive to Notch inhibitors (gamma-secretase inhibitors [GSI]). In contrast, T-ALLs induced by KrasG12D and c-Myc did not acquire Notch1 mutations and were resistant to GSI. We conclude that upregulation of c-Myc is sufficient to substitute for Notch in lymphomagenesis, whereas activation of Akt signaling is not. These data identify c-Myc not AKT as the driving force behind Notch-induced lymphomagenesis. These data emphasize the Notch/c-Myc axis as an attractive, rational, therapeutic target in T-ALL. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 3152-3152
Author(s):  
Stavroula Baritaki ◽  
Eriko Suzuki ◽  
Mario I. Vega ◽  
Haiming Chen ◽  
James R. Berenson ◽  
...  

Abstract Abstract 3152 We have reported that treatment of B-NHL cell lines with rituximab resulted in the inhibition of the constitutively activated PI3K-AKT pathway (Suzuki et al., Oncogene 26:6184, 2007). Examination of the mechanism by which rituximab inhibits the PI3K/Akt pathway revealed that it induces the expression of the PI3K/Akt inhibitor PTEN (phosphatase and tensin homolog detected on chromosome 10). Time kinetic analysis indicated that the induction of PTEN occurs as early as 6 h post-rituximab treatment. The objective of this study is to delineate the molecular mechanism by which PTEN is induced by rituximab. We hypothesized that rituximab-induced inhibition of the constitutively activated NF-κB pathway, directly and indirectly through inhibition of the PI3K/Akt pathway, may result in the inhibition downstream of the PTEN transcription factors and repressors, Snail and Yin Yang 1 (YY1). Snail has been reported to repress the transcription of PTEN (Escriva, M et al., Mol Cell Biol 28:1528, 2008). Also, YY1 has been reported to positively regulate Snail transcription and expression (Palmer, MB et al., Mol Cancer Res 7:221, 2009). In addition, the induction of PTEN by rituximab also results, in a feed-back loop, in the suppression of YY1 and Snail and potentiates the induction of PTEN (Petriella et al, Cancer Biology Therapy, 8, 1389, 2009). This hypothesis was tested using the B-NHL Ramos cells, as model, for these studies. Treatment of Ramos with rituximab (20ug/ml for 16 hours) resulted in the inhibition of NF-κB, Snail, and YY1 and induction of PTEN expression as assessed by western. The direct role of Snail and YY1 in the suppression of PTEN expression was demonstrated in cells transfected with Snail or YY1 siRNA. The treated cells demonstrated significant induction of PTEN and, concomitantly, inhibition of the PI3K/Akt pathway. We have reported that rituximab sensitizes B-NHL cells to apoptosis by various chemotherapeutic drugs and demonstrated that inhibition of the PI3K/Akt pathway by various inhibitors mimics rituximab in the sensitization of the tumor cells to apoptosis by chemotherapeutic drugs (Suzuki et al., Oncogene 26:6184, 2007). The role of PTEN induction by rituximab in the sensitization of resistanr B-NHL cells to drug-apoptosis was demonstrated in cells pre-treated with rituximab (to induce PTEN) and then transfected with PTEN siRNA. The transfected cells were resistant to drug-induced apoptosis compared to the control siRNA treated cells. Altogether, the above findings demonstrate that rituximab-induced inhibition of the PI3K/Akt pathway is due, in part, to the induction of PTEN through rituximab-induced inhibition of the PTEN repressors Snail and YY1, downstream of NF-κB. Thus, the induction of PTEN by rituximab plays a major role in the reversal of tumor cell resistance to chemotherapeutic drugs. Further, the findings reveal that the dysregulated PI3K/Akt/NF-κB/Snail/YY1/PTEN loop in B-NHL cells can be interfered by rituximab. This interference leads to the inhibition of cell survival and reversal of resistance through sensitization to drugs. We propose that the gene products in this loop are potential novel therapeutic targets in the treatment of lymphoma. Disclosures: No relevant conflicts of interest to declare.


Sign in / Sign up

Export Citation Format

Share Document