scholarly journals Induction of Fetal Hemoglobin By FTX6058, a Novel Small Molecule Development Candidate

Blood ◽  
2020 ◽  
Vol 136 (Supplement 1) ◽  
pp. 1-1
Author(s):  
Peter Rahl ◽  
Ivan Efremov ◽  
Billy Stuart ◽  
Keqiang Xie ◽  
Mark Roth ◽  
...  

Red blood cell disorders like Sickle Cell Disease (SCD) and β-thalassemias are caused by mutations within the gene for the hemoglobin β (HBβ) subunit. A fetal ortholog of HBβ, hemoglobin γ (HBγ) can prevent or reduce disease-related pathophysiology in these disorders by forming nonpathogenic complexes with the required hemoglobin α-subunit. Globin expression is developmentally regulated, with a reduction in production of the fetal ortholog (γ)occurring shortly after birth and a concomitant increase in the levels of the adult ortholog (β). It has been postulated that maintaining expression of the anti-sickling γ ortholog may be of therapeutic benefit in children and adults with SCD. Indeed, individuals with the SCD mutation who also have genetic variants that maintain HBγ expression at clinically meaningful levels do not present with SCD-related symptoms. Parallel target identification efforts using CRISPR and the Fulcrum proprietary, annotated chemical probe screening set in HUDEP2 cells identified a protein complex as a key regulator of HbF expression. Structure-guided medicinal chemistry optimization led to the design of FTX-6058, a novel, potent and selective small molecule with desirable DMPK properties suitable for clinical testing. FTX-6058 treatment of differentiated primary CD34+ cells from multiple healthy donors demonstrated target engagement and potent upregulation of HBG1/2 mRNA and HbF protein. Across multiple healthy and SCD donors, FTX-6058 treatment resulted in a clinically desirable globin profile (e.g., up to 30% absolute HbF) accompanied by pancellular HbF expression, resembling the phenotype of SCD mutation carriers with hereditary persistence of fetal hemoglobin. FTX-6058 demonstrated a superior pharmacological profile relative to hydroxyurea and other small molecule compounds whose putative mechanism of action is to induce HbF. FTX-6058 treatment resulted in robust target engagement and subsequent elevation of the endogenous mouse Hbb-bh1 mRNA in wildtype CD-1 mice and, importantly, also elevation of the human HBG1 mRNA and HbF protein in the Townes SCD mouse model. Preclinical studies using a variety of in vitro and in vivo models have demonstrated the potential of FTX-6058 as a novel HbF-inducing small molecule that could be beneficial to patients with SCD and β-thalassemias. FTX-6058 was shown to be potent and selective in vitro, was well tolerated and elicited a desirable exposure-response relationship in multiple preclinical rodent models with once-a-day oral dosing and at plasma concentrations predicted to be achievable in patients. IND enabling studies for FTX-6058 have been completed. Disclosures Rahl: Fulcrum Therapeutics: Ended employment in the past 24 months. Efremov:Fulcrum Therepeutics: Current Employment, Current equity holder in publicly-traded company. Stuart:Fulcrum Therapeutics: Current Employment, Current equity holder in publicly-traded company. Xie:Fulcrum Therapeutics: Current Employment. Roth:Fulcrum Therepeutics: Current Employment, Current equity holder in publicly-traded company. Barnes:Fulcrum Therapeutics: Ended employment in the past 24 months. Appiah:Fulcrum Therapeutics: Current equity holder in publicly-traded company, Ended employment in the past 24 months. Peters:Fulcrum Therapeutics: Current Employment. Li:Fulcrum Therapeutics: Ended employment in the past 24 months. Kazmirski:Fulcrum Therapeutics: Ended employment in the past 24 months. Bruno:Fulcrum Therapeutics: Current Employment. Stickland:Fulcrum Therepeutics: Current Employment, Current equity holder in publicly-traded company. Ronco:Fulcrum Therepeutics: Current Employment, Current equity holder in publicly-traded company. Cadavid:Fulcrum Therapeutics: Current Employment, Current equity holder in publicly-traded company. Thompson:Fulcrum Therepeutics: Current Employment, Current equity holder in publicly-traded company. Wallace:Fulcrum Therepeutics: Current Employment, Current equity holder in publicly-traded company. Moxham:Fulcrum Therepeutics: Current Employment, Current equity holder in publicly-traded company.

Blood ◽  
2020 ◽  
Vol 136 (Supplement 1) ◽  
pp. 12-12
Author(s):  
Billy Stuart ◽  
Peter Rahl ◽  
Kingsley Appiah ◽  
Ivan Efremov ◽  
Lorin Thompson ◽  
...  

Red blood cell disorders like Sickle Cell Disease (SCD) and β-thalassemias are caused by mutations within the gene for the hemoglobin β (HBβ) subunit. A fetal ortholog of HBβ, hemoglobin γ (HBγ) can prevent or reduce disease-related pathophysiology in these disorders by forming nonpathogenic complexes with the required hemoglobin α subunit. Globin expression is developmentally regulated, with a reduction in production of the fetal ortholog (γ) occurring shortly after birth and a concomitant increase in the levels of the adult ortholog (β). It has been postulated that maintaining expression of the anti-sickling γ ortholog may be of therapeutic benefit in children and adults with SCD. Indeed, individuals with the SCD mutation who also have genetic variants that maintain HBγ expression and the resulting fetal hemoglobin (HbF) tetramer at clinically meaningful levels do not present with SCD-related symptoms. Parallel target identification efforts using CRISPR and the Fulcrum proprietary, annotated chemical probe screening set in HUDEP2 cells identified a protein complex as a key regulator of HbF expression. Structure-guided medicinal chemistry optimization led to the design of FTX-6058, a novel, potent and selective small molecule. FTX-6058 treatment of differentiated primary CD34+ cells from multiple healthy donors demonstrated target engagement and potent upregulation of HBG1/2 mRNA and HbF protein. Across multiple healthy and SCD donors, FTX-6058 treatment resulted in a clinically desirable globin profile (e.g., up to approximately 30% HbF) accompanied by pancellular HbF expression, resembling the phenotype of SCD mutation carriers with hereditary persistence of fetal hemoglobin. FTX-6058 demonstrated a superior pharmacological profile relative to hydroxyurea and other small molecule compounds whose putative mechanism of action is to induce HbF. Preclinical studies using a variety of in vitro assays have demonstrated the potential of FTX-6058 as a clinical development candidate for potential treatment of hemoglobinopathies, such as SCD and ꞵ-thalassemia, via upregulation of HbF. IND enabling studies for FTX-6058 have been completed. Keywords: hemoglobin, fetal hemoglobin, HbF, HBG1/2, sickle cell disease, gene regulation Disclosures Stuart: Fulcrum Therapeutics: Current Employment, Current equity holder in publicly-traded company. Rahl:Fulcrum Therapeutics: Ended employment in the past 24 months. Appiah:Fulcrum Therapeutics: Current equity holder in publicly-traded company, Ended employment in the past 24 months. Efremov:Fulcrum Therepeutics: Current Employment, Current equity holder in publicly-traded company. Thompson:Fulcrum Therepeutics: Current Employment, Current equity holder in publicly-traded company. Wallace:Fulcrum Therepeutics: Current Employment, Current equity holder in publicly-traded company. Moxham:Fulcrum Therapeutics: Current Employment, Current equity holder in publicly-traded company.


Viruses ◽  
2020 ◽  
Vol 12 (10) ◽  
pp. 1116
Author(s):  
Emna Benzarti ◽  
Mutien Garigliany

Usutu virus (USUV), a mosquito-borne zoonotic flavivirus discovered in South Africa in 1959, has spread to many European countries over the last 20 years. The virus is currently a major concern for animal health due to its expanding host range and the growing number of avian mass mortality events. Although human infections with USUV are often asymptomatic, they are occasionally accompanied by neurological complications reminiscent of those due to West Nile virus (another flavivirus closely related to USUV). Whilst USUV actually appears less threatening than some other emergent arboviruses, the lessons learned from Chikungunya, Dengue, and Zika viruses during the past few years should not be ignored. Further, it would not be surprising if, with time, USUV disperses further eastwards towards Asia and possibly westwards to the Americas, which may result in more pathogenic USUV strains to humans and/or animals. These observations, inviting the scientific community to be more vigilant about the spread and genetic evolution of USUV, have prompted the use of experimental systems to understand USUV pathogenesis and to boost the development of vaccines and antivirals. This review is the first to provide comprehensive coverage of existing in vitro and in vivo models for USUV infection and to discuss their contribution in advancing data concerning this neurotropic virus. We believe that this paper is a helpful tool for scientists to identify gaps in the knowledge about USUV and to design their future experiments to study the virus.


2019 ◽  
Vol 37 (15_suppl) ◽  
pp. e16534-e16534 ◽  
Author(s):  
Lisa Butler ◽  
Swati Irani ◽  
Margaret Centenera ◽  
Natalie Ryan ◽  
Neil Pegg ◽  
...  

e16534 Background: Growth and survival of prostate cancer cells are initially dependent upon androgens, and androgen deprivation therapy (ADT) is used to control tumor growth. Unfortunately, resistance to ADT inevitably occurs, and patients relapse with lethal castrate-resistant prostate cancer (CRPC). Increased expression of the androgen receptor (AR) and constitutively active AR variants are hallmarks of CRPC, and treatments targeting aberrant AR signaling are urgently required. CCS1477 is an inhibitor of p300/CBP currently in a Phase I/IIa study for CRPC. CCS1477 enhances degradation of numerous cellular proteins including the AR and AR variants in prostate cancer cells. Our preclinical studies with this compound demonstrated potent single-agent efficacy of CCS1477 using in vitro and in vivo models of prostate cancer and, when used in combination, CCS1477 enhances the efficacy of enzalutamide, a clinical AR antagonist. Understanding the response of clinical tumors to CCS1477, and their potential adaptive evolution, is essential to personalize treatment and predict potential resistance mechanisms. Methods: To assess CCS1477 in human disease, we used a unique model in which clinical prostate tumors from radical prostatectomy are cultured as explants with maintenance of tissue integrity, cell proliferation and androgen signaling. Tumors from 13 patients were cultured in the absence or presence of CCS1477 (10µM) or enzalutamide (10µM) for 48 or 72 hours; micromolar doses were selected to account for altered small molecule uptake and penetration into tissues compared to cell lines, as previously reported. Proliferation, apoptosis and androgen signaling were all analyzed post-culture. Results: Whereas the tumor explants exhibited highly heterogenous proliferative responses to enzalutamide, tumors from all patients exhibited a marked antiproliferative response to CCS1477 (mean reduction in Ki67 immunoreactivity of > 90% compared to vehicle control; p < 0.0005). Culture with CCS1477 was associated with repression of androgen signaling in the prostate tissues, measured by expression and secretion of the clinical biomarker prostate specific antigen (PSA). Conclusions: The consistent and pronounced efficacy of CCS1477 in this patient-derived model would support further investigation of this class of epigenetic agents in the castrate-sensitive prostate cancer setting.


Blood ◽  
2021 ◽  
Vol 138 (Supplement 1) ◽  
pp. 1142-1142
Author(s):  
Jennifer Totman ◽  
Dorothy Brach ◽  
Vinny Motwani ◽  
Selene Howe ◽  
Emily Deutschman ◽  
...  

Abstract Introduction: SETD2 is the only known histone methyltransferase (HMT) capable of catalyzing H3K36 trimethylation (H3K36me3) in vivo. It plays an important role in several biological processes including B cell development and maturation, leading to the hypothesis that SETD2 inhibition in these settings could provide anti-tumor effects. The normal process of B cell development/maturation renders B cells susceptible to genetic vulnerabilities that can result in a dysregulated epigenome and tumorigenesis, including in multiple myeloma (MM) and diffuse large B-cell lymphoma (DLBCL). For example, 15%-20% of MM harbors the high risk (4;14) chromosomal translocation, resulting in high expression of the multiple myeloma SET domain (MMSET) gene. MMSET is an HMT that catalyzes H3K36me1 and H3K36me2 formation and extensive scientific work has established overexpressed MMSET as a key factor in t(4;14) myeloma pathogenesis. To the best of our knowledge MMSET has eluded drug discovery efforts, however, since t(4;14) results in high levels of the H3K36me2 substrate for SETD2, inhibiting SETD2 offers promise for targeting the underlying oncogenic mechanism driven by MMSET overexpression in t(4;14) MM patients. In addition, SETD2 loss of function mutations described to date in leukemia and DLBCL are always heterozygous, suggesting a haploinsufficient tumor suppressor role for SETD2. This observation points to a key role for SETD2 in leukemia and lymphoma biology and suggests that therapeutic potential of SETD2 inhibition may also exist in these or similar settings. EZM0414 is a first-in-class, potent, selective, orally bioavailable small molecule inhibitor of the enzymatic activity of SETD2. We explored the anti-tumor effects of SETD2 inhibition with EZM0414 in MM and DLBCL preclinical studies to validate its potential as a therapy in these tumor types. Methods: Cellular proliferation assays determined IC 50 values of EZM0414 in MM and DLBCL cell line panels. Cell line-derived xenograft preclinical models of MM and DLBCL were evaluated for tumor growth inhibition (TGI) in response to EZM0414. H3K36me3 levels were determined by western blot analysis to evaluate target engagement. Combinatorial potential of SETD2 inhibition with MM and DLBCL standard of care (SOC) agents was evaluated in 7-day cotreatment in vitro cellular assays. Results: Inhibition of SETD2 by EZM0414 results in potent anti-proliferative effects in a panel of MM and DLBCL cell lines. EZM0414 inhibited proliferation in both t(4;14) and non-t(4;14) MM cell lines, with higher anti-proliferative activity generally observed in the t(4;14) subset of MM cell lines. The median IC 50value for EZM0414 in t(4;14) cell lines was 0.24 μM as compared to 1.2 μM for non-t(4;14) MM cell lines. Additionally, inhibitory growth effects on DLBCL cell lines demonstrated a wide range of sensitivity with IC 50 values from 0.023 μM to &gt;10 μM. EZM0414 resulted in statistically significant potent antitumor activity compared to the vehicle control in three MM and four DLBCL cell line-derived xenograft models. In the t(4;14) MM cell line-derived xenograft model, KMS-11, robust tumor growth regressions were observed at the top two doses with maximal TGI of 95%. In addition, two non-t(4;14) MM (RPMI-8226, MM.1S) and two DLBCL xenograft models (TMD8, KARPAS422) demonstrated &gt; 75% TGI; with two additional DLBCL models (WSU-DLCL2, SU-DHL-10) exhibiting &gt; 50% TGI in response to EZM0414. In all models tested, the antitumor effects observed correlated with reductions in intratumoral H3K36me3 levels demonstrating on-target inhibition of SETD2 methyltransferase activity in vivo. In vitro synergistic antiproliferative activity was also observed when EZM0414 was combined with certain SOC agents for MM and DLBCL. Conclusions: Targeting SETD2 with a small molecule inhibitor results in significantly reduced growth of t(4;14) MM, as well as non-t(4;14) MM and DLBCL cell lines, in both in vitro and in vivo preclinical studies. In addition, in vitro synergy was observed with EZM0414 and certain SOC agents commonly used in MM and DLBCL, supporting the combination of SETD2 inhibition with current MM and DLBCL therapies. This work provides the rationale for targeting SETD2 in B cell malignancies such as MM, especially t(4;14) MM, as well as DLBCL, and forms the basis for conducting Phase 1/1b clinical studies to evaluate the safety and activity of EZM0414 in patients with R/R MM and DLBCL. Disclosures Totman: Epizyme, Inc.: Current Employment, Current equity holder in publicly-traded company. Brach: Epizyme, Inc.: Current Employment, Current equity holder in publicly-traded company. Motwani: Epizyme, Inc.: Current Employment, Current equity holder in publicly-traded company. Howe: Epizyme, Inc.: Current Employment, Current equity holder in publicly-traded company. Deutschman: Epizyme, Inc.: Divested equity in a private or publicly-traded company in the past 24 months, Ended employment in the past 24 months. Lampe: Epizyme, Inc.: Divested equity in a private or publicly-traded company in the past 24 months, Ended employment in the past 24 months. Riera: Epizyme, Inc.: Current Employment, Current equity holder in publicly-traded company. Tang: Epizyme, Inc.: Divested equity in a private or publicly-traded company in the past 24 months, Ended employment in the past 24 months. Eckley: Epizyme, Inc.: Current Employment, Current equity holder in publicly-traded company. Alford: Epizyme, Inc.: Current Employment, Current equity holder in publicly-traded company. Duncan: Epizyme, Inc.: Divested equity in a private or publicly-traded company in the past 24 months, Ended employment in the past 24 months. Farrow: Epizyme, Inc.: Current Employment, Current equity holder in publicly-traded company. Dransfield: Epizyme, Inc.: Current Employment, Current equity holder in publicly-traded company. Raimondi: Epizyme, Inc.: Current Employment, Current equity holder in publicly-traded company. Thomeius: Foghorn Therapeutics: Current Employment, Current equity holder in publicly-traded company. Cosmopoulos: Epizyme, Inc.: Current Employment, Current equity holder in publicly-traded company. Kutok: Epizyme, Inc.: Current Employment, Current equity holder in publicly-traded company.


2000 ◽  
Vol 18 (1) ◽  
pp. 178-178 ◽  
Author(s):  
Eric K. Rowinsky ◽  
Rachel Humphrey ◽  
Lisa A. Hammond ◽  
Cheryl Aylesworth ◽  
Leslie Smetzer ◽  
...  

PURPOSE: To evaluate the feasibility of administering BAY 12-9566, a matrix metalloproteinase (MMP) inhibitor with relative specificity against MMP-2, MMP-3, and MMP-9, on a protracted oral daily dosing schedule in patients with advanced solid malignancies. The study also sought to determine the principal toxicities of BAY 12-9566, whether plasma BAY 12-9566 steady state concentrations (Css) of biologic relevance could be sustained for prolonged periods, and whether BAY 12-9566 affected plasma concentrations of MMP-2, MMP-9, and tissue inhibitor of MMP-2 (TIMP-2). PATIENTS AND METHODS: Patients with solid malignancies were treated with BAY 12-9566 at daily oral doses ranging from 100 to 1,600 mg. BAY 12-9566 dose schedules included 100 mg once daily, 400 mg once daily, 400 mg twice daily, 400 mg three times daily, 400 mg four times daily, and 800 mg twice daily. Plasma was collected to study the range of BAY 12-9566 Css values achieved, and exploratory studies were performed to assess the effects of BAY 12-9566 on plasma concentrations of MMP-2, MMP-9, and TIMP-2. RESULTS: Twenty-one patients were treated with 47 28-day courses of BAY 12-9566. The most common side effects were headache, nausea, vomiting, abnormalities in hepatic functions, and thrombocytopenia, which were rarely clinically significant. BAY 12-9566 was well tolerated on all dose schedules, and there was no consistent dose-limiting toxicity that precluded treatment in the range of dose schedules evaluated. Instead, dose escalation was terminated because BAY 12-9566 plasma Css values increased less than proportionately and plateaued as the daily dose was increased within the dose range of 100 to 1,600 mg/d, suggesting saturable drug absorption. Mean plasma Css values achieved with all dose schedules exceeded BAY 12-9566 concentrations required to inhibit MMPs in vitro and in vascular invasion and tumor proliferation in vivo models. There were no consistent effects of BAY 12-9566 on the plasma concentrations of MMP-2 and MMP-9 over the continuous dosing period at any dose schedule level. However, plasma levels of TIMP-2 seemed to increase in a dose-dependent manner (r2 = .50, P = .046). CONCLUSIONS: The recommended dose of BAY 12-9566 for subsequent disease directed studies is 800 mg twice daily, which resulted in biologically relevant plasma Css values and an acceptable toxicity profile. Although exploratory studies of MMPs in plasma were not revealing, it is conceivable that some tumor types and disease settings are more likely to produce more readily quantifiable levels of activated MMPs than others. Therefore, attempts to identify and quantify surrogate markers of MMP inhibitory effects should continue to be performed in disease-directed studies in more homogenous patient populations.


2011 ◽  
Vol 23 (6) ◽  
pp. 788 ◽  
Author(s):  
D. R. Li ◽  
G. S. Qin ◽  
Y. M. Wei ◽  
F. H. Lu ◽  
Q. S. Huang ◽  
...  

This study was carried out to test the feasibility of enhancing embryo production in vivo and in vitro by immunoneutralisation against inhibin or follistatin. In Experiment 1, multi-parity buffaloes were assigned into three groups: High group (n = 8), which received one primary (2 mg) and two booster (1 mg) vaccinations (28-day intervals) with a recombinant inhibin α subunit in 1 mL of white oil adjuvant; Low group (n = 8), which received half that dose; and Control group (n = 7), which received only adjuvant. Immunisation against inhibin stimulated development of ovarian follicles. Following superovulation and artificial insemination, inhibin-immunised buffaloes had more developing follicles than the Control buffaloes. The average number of embryos and unfertilised ova (4.5 ± 0.6, n = 6) in the High group was higher (P < 0.05) than in the Control group (2.8 ± 0.6, n = 5) and was intermediate (4.1 ± 0.7, n = 7) in the Low group. The pooled number of transferable embryos of the High and Low groups (3.2 ± 0.5, n = 13) was also higher (P < 0.05) than that (1.6 ± 0.7, n = 5) of the controls. The immunised groups also had higher plasma concentrations of activin, oestradiol and progesterone. In Experiment 2, the addition of anti-inhibin or anti-follistatin antibodies into buffalo oocyte IVM maturation medium significantly improved oocyte maturation and cleavage rates following parthenogenic activation. Treatment with anti-follistatin antibody also doubled the blastocyst yield from activated embryos. These results demonstrated that immunisation against inhibin stimulated follicular development, enhanced oocyte quality and maturation competence, yielded more and better embryos both in vivo and in vitro.


Blood ◽  
2021 ◽  
Vol 138 (Supplement 1) ◽  
pp. 3342-3342
Author(s):  
Bin Cai ◽  
Aaron N Nguyen ◽  
Songmao Zheng ◽  
Jianfeng Shi ◽  
Guizhong Liu ◽  
...  

Abstract Binding of the CD47 membrane protein, overexpressed on many tumor types, to the SIRPα inhibitory receptor on myeloid cells results in the inhibition of the activation of macrophages and other phagocytes against tumors. Therapies targeting the CD47/SIRPα axis have shown success in various preclinical models and are now in clinical trials for both solid and hematologic malignancies. Although anti-CD47 therapies have demonstrated promising clinical activities, the expression of CD47 on many different normal human cell types, including red blood cells (RBCs), serves as a large antigen sink for anti-CD47 antibodies. Blocking CD47 on RBCs, such as by magrolimab (Hu5F9), has led to transient anemia, requiring step-up dosing in the clinic. To circumvent these challenges, we developed ADG153, a fully human anti-CD47 SAFEbody masked by conditionally activable peptides. In normal tissues, the SAFEbody masking moiety can function to block ADG153 from binding to CD47; however, in an activable condition such as the tumor microenvironment where protease activity has been reported to be elevated, the masked antibody can be activated, enabling the activated ADG153 antibody to bind to and inhibit CD47 function on tumor cells. For head-to-head comparisons, in vitro studies were performed to compare the activity of Hu5F9 and unmasked ADG153 parental antibody of the IgG4 isotype. Both antibodies (1) blocked human SIRPα from binding to human CD47, (2) had similar potencies for binding to human CD47 protein, CD47-positive tumor cell lines, and human RBCs, and (3) induced macrophage phagocytosis. In contrast, the masked ADG153 SAFEbody demonstrated significantly reduced activities (&gt;450-fold) in the same in vitro assays, showing strong masking efficiencies. Unlike Hu5F9, both the ADG153 parental and SAFEbody molecules did not cause in vitro human RBC hemagglutination. Although the ADG153 SAFEbody had significantly reduced binding to CD47 in vitro as expected, it demonstrated strong anti-tumor activity in in vivo mouse tumor models. In both the disseminated and subcutaneous CD47-positive Raji tumor models, the ADG153 SAFEbody of the IgG4 isotype showed similar anti-tumor activities to Hu5F9. However, in exploratory toxicology studies in cynomolgus monkeys, the ADG153 SAFEbody showed significantly less decreases than Hu5F9 in RBCs, hemoglobin, and hematocrit. Hu5F9 at 10 mg/kg caused ~49% maximum decrease in RBCs, while ADG153 SAFEbody at 60 mg/kg showed ~23% maximum decrease in RBCs (Panel A). Pharmacokinetic (PK) studies of single intravenous dose ADG153 SAFEbody compared to Hu5F9 in monkeys demonstrated ~8-fold longer apparent half-life and ~9-fold higher Area Under the Curve at 10 mg/kg (Panel B). Collectively, ADG153 SAFEbody is a differentiated anti-CD47 antibody that has strong in vivo anti-tumor activity with reduced RBC-related and antigen sink liabilities and favorable PK properties. This preclinical profile with an enhanced therapeutic index provides a strong rationale for advancing ADG153 SAFEbody into clinical development. Figure 1 Figure 1. Disclosures Cai: Adagene Inc.: Current Employment, Current equity holder in publicly-traded company. Nguyen: Adagene Inc.: Current Employment, Current equity holder in publicly-traded company; Sparcbio, LLC: Ended employment in the past 24 months. Zheng: Adagene Inc.: Current Employment, Current equity holder in publicly-traded company; Janssen Pharmaceuticals: Ended employment in the past 24 months. Shi: Adagene Inc.: Current Employment, Current equity holder in publicly-traded company. Liu: Adagene Inc.: Current Employment, Current equity holder in publicly-traded company. Li: Adagene Inc.: Current Employment, Current equity holder in publicly-traded company. Du: Adagene Inc.: Current Employment, Current equity holder in publicly-traded company. Luo: Adagene Inc.: Current Employment, Current equity holder in publicly-traded company, Membership on an entity's Board of Directors or advisory committees. Xu: Adagene Inc.: Current Employment, Current equity holder in publicly-traded company; Bristol Myers Squibb: Current equity holder in publicly-traded company, Ended employment in the past 24 months.


Blood ◽  
2020 ◽  
Vol 136 (Supplement 1) ◽  
pp. 23-24
Author(s):  
Agnes E. Hamburger ◽  
Breanna DiAndreth ◽  
Mark E. Daris ◽  
Melanie L. Munguia ◽  
Kiran Deshmukh ◽  
...  

Background: Chimeric Antigen Receptor (CAR) T-cell therapy is a proven, powerful clinical modality. However, it is still limited by the fundamental obstacle of cancer therapy: discriminating cancer from normal cells. Current FDA-approved CAR T-cell therapies eliminate normal B cells, leaving patients with B cell aplasia, hypogammaglobulinemia, and susceptible to infection. HLA-Class I loss of heterozygosity (LOH) occurs at an average frequency of ~13% among cancers and specifically ~13% in DLBCL (Broad Institute TCGA database). These losses are irreversible and distinguish the cancer from normal cells. To exploit LOH at the HLA locus, we target the remaining allelic product in tumors with LOH. We evaluated a novel AND NOT Boolean logic gate CAR T module (Tmod) T-cell system to target HLA-A*02 (A2) LOH in lymphoma using both in vitro and in vivo models. Methods: To model tumor cells that have lost A2 via LOH, we used CD19+ Raji lymphoma tumor cells. To model the corresponding "normal" cells, we established CD19+ Raji cells stably expressing A2 (CD19+/A2+ Raji). We then engineered human primary T cells to express a modular signal-integration circuit designed to be activated only by CD19+ lymphoma that do not express A2 (CD19+/A2- Raji). Each primary Tmod CAR T cell expresses both a CD19 activator (A) module using a CD19-targeting 3rd generation CAR, and a separate A2-targeting blocker (B) module using a novel A2-targeting inhibitory receptor. Human primary Tmod CAR T cells were engineered to co-express the A/B modules. First, T cells were stimulated via CD3/CD28 activation, followed by A/B module lentivirus transduction, and enriched for the B module. In vitro Tmod CAR T cells were evaluated for selective killing of CD19+/A2- Raji compared with CD19+/A2+ Raji. For in vivo proof of concept, both CD19+/A2- Raji and CD19+/A2+ Raji cell lines were injected and established into flanks of immunocompromised NGS mice and challenged with adoptive transfer of engineered human primary Tmod CAR T cells. Results: Engineered primary Tmod CAR T cells selectively killed CD19+/A2- Raji and spared CD19+/A2+ Raji (Figure 1). Tmod CAR T cells reversibly cycled from a state of non-killing, "block", to cytotoxicity and back, depending on the CD19+/A2- Raji vs. CD19+/A2+ Raji cells to which they were exposed. Importantly, primary Tmod CAR T cells selectively eliminated only the CD19+/A2- Raji cells in mixed cultures. In vivo, Tmod CAR T cells selectively eradicated CD19+/A2- Raji. More importantly, Tmod CAR T cells did not eradicate CD19+/A2+ Raji in vivo. Conclusions: CD19-targeting Tmod CAR T cells demonstrated robust and selective killing, distinguishing Raji lymphoma lines, one with A2 (CD19+/A2+) and one without (CD19+/A2-), both in vitro and in vivo. A critical requirement for Tmod CAR T-cell therapy is to determine reversibility and lack of anergy in the kill-"block"-kill and "block"-kill-"block" scenarios. This result demonstrates that Tmod CAR T cells do not terminally differentiate into one state (blockade or activation), but rather can switch back and forth as they integrate signals from "normal" and tumor cells. Furthermore, because Tmod CAR T cells can selectively target malignant B cells, it may increase the clinical therapeutic window for CAR T. Tmod CAR T cells may provide a powerful system to address hematologic malignancies and solid tumors with HLA-Class I LOH. Disclosures Hamburger: A2 Biotherapeutics: Current Employment, Current equity holder in private company. DiAndreth:A2 Biotherapeutics: Current Employment. Daris:A2 Biotherapeutics: Current Employment, Current equity holder in private company. Munguia:A2 Biotherapeutics: Current Employment, Current equity holder in private company. Deshmukh:A2 Biotherapeutics: Current Employment. Mock:A2 Biotherapeutics: Current Employment, Current equity holder in private company. Asuelime:A2 Biotherapeutics: Current Employment, Current equity holder in private company. Lim:A2 Biotherapeutics: Current Employment, Current equity holder in private company. Kreke:A2 Biotherapeutics: Current Employment, Current equity holder in private company; Gilead: Current equity holder in publicly-traded company, Divested equity in a private or publicly-traded company in the past 24 months. Tokatlian:A2 Biotherapeutics: Current Employment, Current equity holder in private company. Maloney:A2 Biotherapeutics: Consultancy, Current equity holder in publicly-traded company, Honoraria; Bioline Rx: Consultancy, Honoraria; Celgene: Consultancy, Honoraria, Research Funding; Genentech: Consultancy, Honoraria; Gilead Science: Consultancy, Honoraria; Amgen: Consultancy, Honoraria; Juno Therapeutics: Consultancy, Honoraria, Patents & Royalties, Research Funding. Go:A2 Biotherapeutics: Current Employment, Current equity holder in private company; Amgen: Current equity holder in publicly-traded company; Allogene: Divested equity in a private or publicly-traded company in the past 24 months; Gilead: Current equity holder in publicly-traded company; Illumina: Divested equity in a private or publicly-traded company in the past 24 months. Kamb:A2 Biotherapeutics: Current Employment, Current equity holder in private company, Membership on an entity's Board of Directors or advisory committees, Patents & Royalties, Research Funding.


2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Laura-Oana Albulescu ◽  
Chunfang Xie ◽  
Stuart Ainsworth ◽  
Jaffer Alsolaiss ◽  
Edouard Crittenden ◽  
...  

AbstractSnakebite is a medical emergency causing high mortality and morbidity in rural tropical communities that typically experience delayed access to unaffordable therapeutics. Viperid snakes are responsible for the majority of envenomings, but extensive interspecific variation in venom composition dictates that different antivenom treatments are used in different parts of the world, resulting in clinical and financial snakebite management challenges. Here, we show that a number of repurposed Phase 2-approved small molecules are capable of broadly neutralizing distinct viper venom bioactivities in vitro by inhibiting different enzymatic toxin families. Furthermore, using murine in vivo models of envenoming, we demonstrate that a single dose of a rationally-selected dual inhibitor combination consisting of marimastat and varespladib prevents murine lethality caused by venom from the most medically-important vipers of Africa, South Asia and Central America. Our findings support the translation of combinations of repurposed small molecule-based toxin inhibitors as broad-spectrum therapeutics for snakebite.


2012 ◽  
Vol 22 (6) ◽  
pp. 2266-2270 ◽  
Author(s):  
Martin J.I. Andrews ◽  
J. Andrew Clase ◽  
Gregory Bar ◽  
Giovanni Tricarico ◽  
Paul J. Edwards ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document