scholarly journals CCR2 Expression Promotes Diffuse Large B Lymphoma Cell Survival and Invasion

Blood ◽  
2021 ◽  
Vol 138 (Supplement 1) ◽  
pp. 4494-4494
Author(s):  
Li Yan-Li ◽  
Quan-Quan Hu ◽  
Zhao-Feng Wen ◽  
Qian Li ◽  
Zhi-Min Zhai

Abstract Objective: Diffuse large B cell lymphoma (DLBCL) is the most common subtype of non-Hodgkin lymphoma world wide. It is a phenotypically and genetically heterogeneous disease, accounting for 30-40% of all cases. 50%-70% of patients can be cured by the R-CHOP regimen, but nearly one-third of patients develop relapsed or refractory disease. CC chemokine receptor 2 (CCR2), the high affinity receptor of CC-Chemokine Ligand 2 (CCL2), which is the most representative of the CC chemokine family members, has be regarded to involve in tumor growth, angiogenesis, epithelial mesenchymal transition, metastasis and immune escape etc.. In recent years, the role and mechanism in DLBCL has not been reported yet. Our preliminary study showed that high expression of CCR2 was correlated with clinicopathological characteristics, and an adverse prognostic factor for overall survival (OS) and progression-free survival (PFS) of DLBCL patients. The purpose of this study is to investigate the role of CCR2 expression in DLBCL cells proliferation and migration by in vitro and in vivo. Methods: CCR2 expression were analyzed in human DLBCL cell lines (SUDHL-2, SUDHL-4, SUDHL-6, OCI-Ly8 and OCI-Ly10) by Western blot (WB). SUDHL-2 and OCI-Ly8 cells were incubated with CCR2 antagonist SC-202525 (Santa Crutz Biotechnology), and control cells were left untreated. The proliferation, migration, apoptosis and signaling pathway were detected by CCK8, transwell, flow cytometry (FC) and WB, respectively in vitro. The engraftment, tumor growth, dissemination and survival time were observed in BALB/c nude mice. Results: CCR2 were expressed in all human DLBCL cell lines (relative CCR2 expression was higher in SUDHL-2, SUDHL-4 and OCI-Ly8 than in SUDHL-6 and OCI-Ly10 cell lines). Blockade of CCR2 expression signaling with CCR2 antagonist inhibited tumor cell proliferation, migration and anti-apoptosis ability. The signaling involved in the proliferation and migration of DLBCL cells by activating PI3K/Akt signaling pathway, and induced apoptosis through activation of P38MARK signaling pathway. Expression of CCR2 was also associated with increased engraftment, tumor growth and dissemination, and decreased survival time in xenograft mice. Furthermore, administration of CCR2 antagonist decreased tumor growth and dissemination of DLBCL cells, and increased survival time in the xenograft model. Conclusions: Our study demonstrates that CCR2 plays an important role in the development of DLBCL by stimulating cell proliferation, migration and anti-apoptosis. The inhibition of CCR2 may, therefore, be a potential target for anticancer therapy in DLBCL. Disclosures No relevant conflicts of interest to declare.

2017 ◽  
Vol 242 (10) ◽  
pp. 1044-1050 ◽  
Author(s):  
Xiaolong Shui ◽  
Chengwei Zhou ◽  
Wei Lin ◽  
Yang Yu ◽  
Yongzeng Feng ◽  
...  

Background: Chondrosarcoma is one of the common malignant histologic tumors, very difficult to treat, but the concrete cause and mechanism have not yet been elucidated. The present study aimed to investigate the functional involvement of BCAR4 in chondrosarcoma and its potentially underlying mechanism. QRT-PCR and western blot were used to determine the expression of BCAR4 and mTOR signaling pathway proteins both in chondrosarcoma tissues and cells. Chondrosarcoma cell proliferation and migration were assessed by MTT assay and transwell migration assay, respectively. The expression vectors were constructed and used to modulate the expression of BCAR4 and mTOR. Chondrosarcoma xenograft mouse model was established by subcutaneous injection with chondrosarcoma cell lines. The tumor volume was monitored to evaluate the effect of BCAR4 on chondrosarcoma cell tumorigenicity. The expressions of BCAR4, p-mTOR and p-P70S6K were up-regulated in chondrosarcoma tissues and cell lines. Moreover, BCAR4 overexpression had significant promoting effect on cell proliferation and migration in chondrosarcoma cells. Furthermore, mTOR signaling pathway was epigenetically activated by BCAR4-induced hyperacetylation of histone H3. We also found that mTOR overexpression abolished the decrease of chondrosarcoma cell proliferation and migration induced by BCAR4 knockdown. In vivo experiments confirmed that BCAR4 overexpression significantly accelerated tumor growth, while the knockdown of BCAR4 significantly inhibited tumor growth. BCAR4 promoted chondrosarcoma cell proliferation and migration through activation of mTOR signaling pathway, and thus contributed to chondrosarcoma progression. Impact statement LncRNA BCAR4 promoted chondrosarcoma cell proliferation and migration through activation of mTOR signaling pathway, and thus contributed to chondrosarcoma progression.


2020 ◽  
Vol 22 (Supplement_2) ◽  
pp. ii101-ii101
Author(s):  
Christoph Kesseler ◽  
Julian Kahr ◽  
Natalie Waldt ◽  
Nele Stroscher ◽  
Josephine Liebig ◽  
...  

Abstract PURPOSE To evaluate the role of the small GTPases RhoA, Rac1 and Cdc42 in meningiomas as therapeutic targets and their interactions in meningiomas. EXPERIMENTAL DESIGN We analyzed expression of GTPases in human meningioma samples and meningioma cell lines of various WHO grades. Malignant IOMM-Lee meningioma cells were used to generate shRNA mediated knockdowns of GTPases RhoA, Rac1 or Cdc42 and to study knockdown effects on proliferation and migration, as well as analysis of cell morphology by confocal microscopy. The same tests were used to investigate effects of the two inhibitors Fasudil and EHT-1864 of malignant IOMM-Lee, KT21 and benign Ben-Men cells and the effects of these drugs on IOMM-Lee knockdown cells. The effects of GTPase knockdowns and Fasudil treatment were studied in terms of overall survival by intracranial xenografts of mice. Potential interactions of GTPases regarding NF2, mTOR and FAK-Paxillin were examined. RESULTS Small GTPases were upregulated in meningiomas of higher tumor grades. Reduced proliferation and migration could be achieved by GTPase knockdown in IOMM-Lee cells. Additionally, the ROCK-inhibitor Fasudil and Rac1-inhibitor EHT-1864 reduced proliferation in different meningioma cell lines and reduced proliferation and migration independent of GTPase knockdowns/status. Moreover, overall survival in vivo could also be increased by knockdowns of RhoA and Rac1 as well as Fasudil treatment. GTPase expression was affected dependent on the NF2 status but effects were not very distinct, indicating that NF2 is not strongly involved in GTPase regulation in meningiomas. In terms of mTOR and FAK-Paxillin signaling, each GTPase changes those pathways in a different manner. CONCLUSION Small GTPases are important effectors in meningioma proliferation and migration in vitro as well as survival in vivo and their inhibition should be considered as potential treatment option.


2021 ◽  
Vol 30 ◽  
pp. 096368972110255
Author(s):  
Qing Wang ◽  
Kai Li ◽  
Xiaoliang Li

Non-small cell lung cancer (NSCLC) is the most common type of lung cancer. Increasing evidence suggests that long non-coding RNAs (lncRNAs) function in the tumorigenesis of NSCLC. LINC00958, a newly identified lncRNA, has been reported to be closely linked to tumorigenesis in several cancers. However, its specific role in NSCLC remains unclear. In this study, we determined the expression of LINC00958 in NSCLC by RT-qPCR analysis and evaluated cell proliferation and migration by CCK-8 and transwell assays, respectively. We established a xenograft tumor model to examine the effect of LINC00958 on tumor growth in vivo. Luciferase reporter assays were performed to determine the interaction between LINC00958 and miR-204-3p and the interaction between miR-204-3p and KIF2A. We found that LINC00958 was up-regulated in NSCLC tissues and cell lines. Down-regulation of LINC00958 inhibited cell proliferation and migration in vitro and suppressed tumor growth in vivo. Besides, miR-204-3p was identified as a target of LINC00958 and miR-204-3p inhibitor could reverse the inhibitory effect of LINC00958 knockdown on proliferation and migration of NSCLC cells. We also validated that KIF2A, a direct target of miR-204-3p, was responsible for the biological role of LINC00958. KIF2A antagonized the effect of miR-204-3p on NSCLC cell proliferation and migration and was regulated by LINC00958/miR-204-3p. Taken together, these data indicate that the LINC00958/miR-204-3p/KIF2A axis is critical for NSCLC progression, which might provide a potential therapeutic target of NSCLC.


2017 ◽  
Vol 42 (4) ◽  
pp. 1670-1683 ◽  
Author(s):  
Yiran Si ◽  
Haiyang Zhang ◽  
Tao Ning ◽  
Ming Bai ◽  
Yi Wang ◽  
...  

Background/Aims: Abnormal expression of HGF is found in various cancers and correlates with tumor proliferation, metastasis and angiogenesis. However, the regulatory mechanism of the HGF-VEGF axis remains unclear. Methods: The expression characteristic of HGF in human gastric cancer tissues was shown by an immunohistochemistry assay, and the expression levels of target protein were detected by Western blot. The relative levels of miR-26a/b and target mRNA were examined by qRT-PCR. We used bioinformatics tools to search for miRNAs that can potentially target HGF. A luciferase assay was used to confirm direct targeting. Furthermore, the functions of miR-26a/b and HGF were evaluated by cell proliferation and migration assays in vitro and by the mouse xenograft tumor model in vivo. Results: We found that the HGF protein was clearly increased while miR-26a/b were dramatically down-regulated in gastric cancer. miR-26a/b directly bind to the 3’-UTR of HGF mRNA at specific targeting sites. We demonstrated that the repression of the HGF-VEGF pathway by miR-26a/b overexpression suppressed gastric cancer cell proliferation and migration. Furthermore, miR-26a/b also showed an anti-tumor effect in the xenograft mouse model by suppressing tumor growth and angiogenesis. Conclusions: miR-26a/b could suppress tumor tumorigenesis and angiogenesis by targeting the HGF-VEGF axis and could serve as a potential treatment modality for targeted therapy in the clinical treatment of gastric cancer.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Yanhui Li ◽  
Yue Xiong ◽  
Zhen Wang ◽  
Jianjun Han ◽  
Sufang Shi ◽  
...  

Abstract Background Breast cancer (BC) is one of the most common cancers and the leading cause of death in women. Previous studies have demonstrated that FAM49B is implicated in several tumor progression, however, the role and mechanism of FAM49B in BC remain to be explored. Therefore, in this study, we aimed to systematically study the role of FAM49B in the proliferation, metastasis, apoptosis, and chemoresistance of BC, as well as the corresponding molecular mechanisms and downstream target. Methods The ONCOMINE databases and Kaplan–Meier plotter databases were analyzed to find FAM49B and its prognostic values in BC. FAM49B expression in BC and adjacent non-tumor tissues was detected by western blot and IHC. Kaplan–Meier analysis was used to identify the prognosis of BC patients. After FAM49B knockdown in MCF-7 and MDA-MB-231 cells, a combination of co-immunoprecipitation, MTT, migration, and apoptosis assays, nude mouse xenograft tumor model, in addition to microarray detection and data analysis was used for further mechanistic studies. Results In BC, the results showed that the expression level of FAM49B was significantly higher than that in normal breast tissue, and highly expression of FAM49B was significantly positively correlated with tumor volume, histological grade, lymph node metastasis rate, and poor prognosis. Knockdown of FAM49B inhibited the proliferation and migration of BC cells in vitro and in vivo. Microarray analysis revealed that the Toll-like receptor signaling pathway was inhibited upon FAM49B knockdown. In addition, the gene interaction network and downstream protein validation of FAM49B revealed that FAM49B positively regulates BC cell proliferation and migration by promoting the Rab10/TLR4 pathway. Furthermore, endogenous FAM49B interacted with ELAVL1 and positively regulated Rab10 and TLR4 expression by stabilizing ELAVL1. Moreover, mechanistic studies indicated that the lack of FAM49B expression in BC cells conferred more sensitivity to anthracycline and increased cell apoptosis by downregulating the ELAVL1/Rab10/TLR4/NF-κB signaling pathway. Conclusion These results demonstrate that FAM49B functions as an oncogene in BC progression, and may provide a promising target for clinical diagnosis and therapy of BC.


Cancers ◽  
2021 ◽  
Vol 14 (1) ◽  
pp. 125
Author(s):  
Justa Friebus-Kardash ◽  
Petra Schulz ◽  
Sandy Reinicke ◽  
Cordula Karthaus ◽  
Quirino Schefer ◽  
...  

Background: Chemerin plasma concentration has been reported to be positively correlated with the risk of colorectal cancer. However, the potential regulation of CRC tumorigenesis and progression has not yet been investigated in an experimental setting. This study addresses this hypothesis by investigating proliferation, colony formation, and migration of CRC cell lines in vitro as well as in animal models. Methods: In vitro, microscopic assays to study proliferation, as well as a scratch-wound assay for migration monitoring, were applied using the human CRC cell lines HCT116, HT29, and SW620 under the influence of the chemerin analog CG34. The animal study investigated HCT116-luc and HT29-luc subcutaneous tumor size and bioluminescence during treatment with CG34 versus control, followed by an ex-vivo analysis of vessel density and mitotic activity. Results: While the proliferation of the three CRC cell lines in monolayers was not clearly stimulated by CG34, the chemerin analog promoted colony formation in three-dimensional aggregates. An effect on cell migration was not observed. In the treatment study, CG34 significantly stimulated both growth and bioluminescence signals of HCT116-luc and HT29-luc xenografts. Conclusions: The results of this study represent the first indication of a tumor growth-stimulating effect of chemerin signaling in CRC.


2021 ◽  
Author(s):  
Shuchi Xia ◽  
Yiqun Ma

Abstract Background: Osteosarcomas (OS) are the most frequent primary malignant bone tumor. Emerging evidence revealed that karyopherin alpha 2 (KPNA2) was strongly associated with the tumorigenesis and development of numerous human cancers. The aim of the present study was to investigate the expression pattern, biological functions and underlying mechanism of KPNA2 in OS. Methods: Bioinformatics TFBIND online was applied to forecast the transcription factor (TF) binding sites in the promoter region of KPNA2. The expression profile of KPNA2 in OS tissues were firstly assessed using TARGET dataset. The expression of KPNA2 in clinical OS samples and normal human adjacent samples were analyzed by RT-qPCR and western blot. CCK8, colony formation, wound-healing, and Transwell assays were used to assess cell viability, proliferation and migration in vitro, and in vivo experiments were performed to explore the effects of KPNA2 and interferon regulatory factor-2 (IRF2) on tumor growth. In addition, the correlation between IRF2 and KPNA2, and their roles on the NF-κB/p65 was investigated using chromatin immunoprecipitation (ChIP), RT-qPCR, western blot and dual-luciferase assays. Results: KPNA2 was obviously upregulated while IRF2 was significantly decreased in OS tissues and cell lines, as well as they were negatively correlated with each other. KPNA2 knockdown remarkably suppressed OS cell growth, migration, invasion in vitro and tumor growth in vivo, while IRF2 knockdown exerts an opposing effect. IRF2 binds to KPNA2 promoter to modulate the tumorigenic malignant phenotypes of OS via regulating NF-κB/p65 signaling. Conclusion: The present study demonstrated that KPNA2 performed the oncogenic function, possibly regulating tumorigenesis through NF-κB/p65 signaling pathway. Importantly, IRF2 was confirmed to serve a potential upstream TF of KPNA2 involving in the regulation of NF-κB/p65 pathway in OS.


2021 ◽  
Vol 11 ◽  
Author(s):  
Bei Pu ◽  
Xu Zhang ◽  
Tengfeng Yan ◽  
Yuntao Li ◽  
Baohui Liu ◽  
...  

Recent studies showed that molecule interacting with CasL2 (MICAL2) could be a novel tumor growth factor, and it is closely associated with tumor growth and invasion. However, the role it plays in glioblastoma (GBM) and its potential mechanisms are currently unknown. Our study is designed to identify the effect of MICAL2 on GBM cells and the potential mechanisms behind it. Here, we found that MICAL2 interacts with TGF receptor-type I (TGFRI) and promotes the proliferation and migration of glioblastoma through the TGF-β/p-Smad2/EMT-like signaling pathway. MICAL2-knockdown inhibited the proliferation of glioblastoma cells, which was related to cell cycle arrest and downregulation of DNA replication. The invasion abilities of U87 and U251 cells were reduced after the knockdown of MICAL2. MICAL2 promoted the growth of GBM in nude mice. High MICAL2 predicts poor outcome of GBM patients. MICAL2 could be identified as a novel promising therapeutic target for human GBM.


2018 ◽  
Author(s):  
Yingping Liu ◽  
Hongfei Qiao ◽  
Jinglong Chen

AbstractBackgroundEMT has the crucial effect on the progression and metastasis of tumor. This work will elucidate the role of miR-425 in EMT and development of TNBC.MethodsThe differential miRNA expression among non-tumor, para-tumor (adjacent tissue of tumor) and tumor tissues was analyzed. The luciferase activities of TGF-β1 3’ UTR treated with miR-425 were determined. Then human breast cancer cell lines were dealt with mimics or inhibitors of miR-425, and then the cell proliferation and migration, invasion ability were assessed. The expression of TGF-β1 and markers of epithelial cell and mesenchymal cell were analyzed. The influences of miR-425 on development of TNBC through inducing EMT by targeting TGF-β 1 and TGF-β1/SMAD3 signaling pathway in TNBC cell lines were investigated. Furthermore, Xenograft mice were used to explore the potential roles of miR-425 on EMT and development of TNBC in vivo.ResultsCompared with non-tumor tissues, 9 miRNAs were upregulated and 3 miRNAs were down-regulated in tumor tissues. The relative expression of miR-425 in tumor tissues was obviously much lower than that in para-tumor and non-tumor tissues. MiR-425 suppressed TGF-β1 expression, additionally inhibited expression of mesenchymal cell markers, while exerted effects on cell proliferation and migration of TNBC cell lines. Moreover, the agomir of miR-425 could protect against development process in murine TNBC xenogarft model.ConclusionsOur results demonstrated that miR-425 targets to TGF-β1, and was a crucial suppressor on EMT and development of TNBC through inhibiting TGF-β1/SMAD3 signaling pathway. It suggested that aim at TGF-β1/SMAD3 signaling pathway by enhancing relative miR-425 expression, was a feasible therapy strategy for TNBC.


2018 ◽  
Author(s):  
Nishanth Ulhas Nair ◽  
Avinash Das ◽  
Vasiliki-Maria Rogkoti ◽  
Michiel Fokkelman ◽  
Richard Marcotte ◽  
...  

AbstractThe efficacy of prospective cancer treatments is routinely estimated by in vitro cell-line proliferation screens. However, it is unclear whether tumor aggressiveness and patient survival are influenced more by the proliferative or the migratory properties of cancer cells. To address this question, we experimentally measured proliferation and migration phenotypes across more than 40 breast cancer cell-lines. Based on the latter, we built and validated individual predictors of breast cancer proliferation and migration levels from the cells’ transcriptomics. We then apply these predictors to estimate the proliferation and migration levels of more than 1000 TCGA breast cancer tumors. Reassuringly, both estimates increase with tumor’s aggressiveness, as qualified by its stage, grade, and subtype. However, predicted tumor migration levels are significantly more strongly associated with patient survival than the proliferation levels. We confirm these finding by conducting siRNA knock-down experiments on the highly migratory MDA-MB-231 cell lines and deriving gene knock-down based proliferation and migration signatures. We show that cytoskeletal drugs might be more beneficial in patients with high predicted migration levels. Taken together, these results testify to the importance of migration levels in determining patient survival.


Sign in / Sign up

Export Citation Format

Share Document