scholarly journals MICAL2 Promotes Proliferation and Migration of Glioblastoma Cells Through TGF-β/p-Smad2/EMT-Like Signaling Pathway

2021 ◽  
Vol 11 ◽  
Author(s):  
Bei Pu ◽  
Xu Zhang ◽  
Tengfeng Yan ◽  
Yuntao Li ◽  
Baohui Liu ◽  
...  

Recent studies showed that molecule interacting with CasL2 (MICAL2) could be a novel tumor growth factor, and it is closely associated with tumor growth and invasion. However, the role it plays in glioblastoma (GBM) and its potential mechanisms are currently unknown. Our study is designed to identify the effect of MICAL2 on GBM cells and the potential mechanisms behind it. Here, we found that MICAL2 interacts with TGF receptor-type I (TGFRI) and promotes the proliferation and migration of glioblastoma through the TGF-β/p-Smad2/EMT-like signaling pathway. MICAL2-knockdown inhibited the proliferation of glioblastoma cells, which was related to cell cycle arrest and downregulation of DNA replication. The invasion abilities of U87 and U251 cells were reduced after the knockdown of MICAL2. MICAL2 promoted the growth of GBM in nude mice. High MICAL2 predicts poor outcome of GBM patients. MICAL2 could be identified as a novel promising therapeutic target for human GBM.

Blood ◽  
2021 ◽  
Vol 138 (Supplement 1) ◽  
pp. 4494-4494
Author(s):  
Li Yan-Li ◽  
Quan-Quan Hu ◽  
Zhao-Feng Wen ◽  
Qian Li ◽  
Zhi-Min Zhai

Abstract Objective: Diffuse large B cell lymphoma (DLBCL) is the most common subtype of non-Hodgkin lymphoma world wide. It is a phenotypically and genetically heterogeneous disease, accounting for 30-40% of all cases. 50%-70% of patients can be cured by the R-CHOP regimen, but nearly one-third of patients develop relapsed or refractory disease. CC chemokine receptor 2 (CCR2), the high affinity receptor of CC-Chemokine Ligand 2 (CCL2), which is the most representative of the CC chemokine family members, has be regarded to involve in tumor growth, angiogenesis, epithelial mesenchymal transition, metastasis and immune escape etc.. In recent years, the role and mechanism in DLBCL has not been reported yet. Our preliminary study showed that high expression of CCR2 was correlated with clinicopathological characteristics, and an adverse prognostic factor for overall survival (OS) and progression-free survival (PFS) of DLBCL patients. The purpose of this study is to investigate the role of CCR2 expression in DLBCL cells proliferation and migration by in vitro and in vivo. Methods: CCR2 expression were analyzed in human DLBCL cell lines (SUDHL-2, SUDHL-4, SUDHL-6, OCI-Ly8 and OCI-Ly10) by Western blot (WB). SUDHL-2 and OCI-Ly8 cells were incubated with CCR2 antagonist SC-202525 (Santa Crutz Biotechnology), and control cells were left untreated. The proliferation, migration, apoptosis and signaling pathway were detected by CCK8, transwell, flow cytometry (FC) and WB, respectively in vitro. The engraftment, tumor growth, dissemination and survival time were observed in BALB/c nude mice. Results: CCR2 were expressed in all human DLBCL cell lines (relative CCR2 expression was higher in SUDHL-2, SUDHL-4 and OCI-Ly8 than in SUDHL-6 and OCI-Ly10 cell lines). Blockade of CCR2 expression signaling with CCR2 antagonist inhibited tumor cell proliferation, migration and anti-apoptosis ability. The signaling involved in the proliferation and migration of DLBCL cells by activating PI3K/Akt signaling pathway, and induced apoptosis through activation of P38MARK signaling pathway. Expression of CCR2 was also associated with increased engraftment, tumor growth and dissemination, and decreased survival time in xenograft mice. Furthermore, administration of CCR2 antagonist decreased tumor growth and dissemination of DLBCL cells, and increased survival time in the xenograft model. Conclusions: Our study demonstrates that CCR2 plays an important role in the development of DLBCL by stimulating cell proliferation, migration and anti-apoptosis. The inhibition of CCR2 may, therefore, be a potential target for anticancer therapy in DLBCL. Disclosures No relevant conflicts of interest to declare.


2021 ◽  
Author(s):  
Fatemeh Gheidari ◽  
Ehsan Arefian ◽  
Mahboubeh Kabiri ◽  
Ehsan Seyedjafari ◽  
Ladan Teimoori-Toolabi ◽  
...  

Abstract Glioblastoma is aggressive and lethal brain cancer, which is incurable by cancer standard treatments. miRNAs have great potential to be used for gene therapy due to their ability to modulate several target genes simultaneously. We found miR-429 is downregulated in glioblastoma and has several predicted target genes from the ERBB signaling pathway using bioinformatics tools. ERBB is the most over-activated genetic pathway in glioblastoma patients, which is responsible for augmented cell proliferation and migration in glioblastoma multiforme (GBM). Here we overexpressed miR-429 using lentiviral vectors in GBM U-251 cells and observed that the expression level of several oncogenes of the ERBB pathway, EGFR, PIK3CA, PIK3CB, KRAS, and MYC significantly decreased; as shown by real-time PCR and western blotting. Using the luciferase assay, we showed that miR-429 directly targets MYC, BCL2, and EGFR. In comparison to scrambled control, miR-429 had a significant inhibitory effect on cell proliferation and migration as deduced from MTT and scratch wound assays and induced cell-cycle arrest in flow cytometry. Altogether miR-429 seems to be an efficient suppressor of the ERBB genetic signaling pathway and a potential therapeutic for glioblastoma.


2021 ◽  
Vol 12 ◽  
Author(s):  
Lijun Li ◽  
Minghui Yin ◽  
Liqing Hu ◽  
Xiaoting Tian ◽  
Xiangrong He ◽  
...  

Pulmonary hypertension (PH) is an extremely serious cardiopulmonary disease, finally leading to progressive right ventricular failure and death. Our previous studies have nominated HLQ2g, a pyrazolo[3,4-b] pyridine derivative stimulating soluble guanylate cyclase (sGC), as a new candidate for the treatment of PH, but the specific mechanism is still not clear. The PH model induced by hypoxia was established in rats. Right ventricular systolic pressure (RVSP) was assessed by jugular vein catheterization. RV weight was the index to evaluate RV hypertrophy. The protein levels of cGMP-dependent protein kinase type I (cGKI), bone morphogenetic protein receptor 2 (BMPR2), phosphorylated Smad1/5/8 (p-Smad1/5/8), and inhibitor of differention 1 (Id1) in pulmonary artery and human pulmonary artery smooth muscle cells (HPASMCs) were determined by western blotting. Cell proliferation and migration were evaluated. In the whole experiment, the first clinically available sGC stimulator Riociguat was used as the reference. In hypoxic PH rat model, elevated RVSP and RV hypertrophy were significantly reduced by HLQ2g treatment. Both Riociguat and HLQ2g attenuated vascular remodeling accompanied with up-regulated cGKI expression and BMP signaling pathway, which was characterized by elevated expression of BMPR2, p-Smad1/5/8, and Id1 in HPH rats. In addition, HLQ2g inhibited proliferation and migration of HPASMCs induced by hypoxia and platelet-derived growth factor (PDGF), restored BMPR2 signaling, which was recalled by Rp-8-Br-PET-cGMPS, the inhibitor of cGKI. In summary, the novel pyrazolo[3,4-b] pyridine derivative HLQ2g can alleviate HPH progression by up-regulating cGKI protein and BMP signaling pathway.


2017 ◽  
Vol 242 (10) ◽  
pp. 1044-1050 ◽  
Author(s):  
Xiaolong Shui ◽  
Chengwei Zhou ◽  
Wei Lin ◽  
Yang Yu ◽  
Yongzeng Feng ◽  
...  

Background: Chondrosarcoma is one of the common malignant histologic tumors, very difficult to treat, but the concrete cause and mechanism have not yet been elucidated. The present study aimed to investigate the functional involvement of BCAR4 in chondrosarcoma and its potentially underlying mechanism. QRT-PCR and western blot were used to determine the expression of BCAR4 and mTOR signaling pathway proteins both in chondrosarcoma tissues and cells. Chondrosarcoma cell proliferation and migration were assessed by MTT assay and transwell migration assay, respectively. The expression vectors were constructed and used to modulate the expression of BCAR4 and mTOR. Chondrosarcoma xenograft mouse model was established by subcutaneous injection with chondrosarcoma cell lines. The tumor volume was monitored to evaluate the effect of BCAR4 on chondrosarcoma cell tumorigenicity. The expressions of BCAR4, p-mTOR and p-P70S6K were up-regulated in chondrosarcoma tissues and cell lines. Moreover, BCAR4 overexpression had significant promoting effect on cell proliferation and migration in chondrosarcoma cells. Furthermore, mTOR signaling pathway was epigenetically activated by BCAR4-induced hyperacetylation of histone H3. We also found that mTOR overexpression abolished the decrease of chondrosarcoma cell proliferation and migration induced by BCAR4 knockdown. In vivo experiments confirmed that BCAR4 overexpression significantly accelerated tumor growth, while the knockdown of BCAR4 significantly inhibited tumor growth. BCAR4 promoted chondrosarcoma cell proliferation and migration through activation of mTOR signaling pathway, and thus contributed to chondrosarcoma progression. Impact statement LncRNA BCAR4 promoted chondrosarcoma cell proliferation and migration through activation of mTOR signaling pathway, and thus contributed to chondrosarcoma progression.


Molecules ◽  
2019 ◽  
Vol 24 (19) ◽  
pp. 3542 ◽  
Author(s):  
Kazutaka Imai ◽  
Hirohito Kato ◽  
Yoichiro Taguchi ◽  
Makoto Umeda

Shikonin, an active ingredient of Lithospermum erythrorhizon, exerts anti-inflammatory and antibacterial effects, and promotes wound healing. We investigated whether shikonin stimulated gingival tissue wound healing in human gingival fibroblasts (hGF). In addition, we evaluated the effects of shikonin on the mitogen-activated protein kinase (MAPK) signaling pathway, which has an important role in wound healing. hGF were subjected to primary culture using gingiva collected from patients. The cells were exposed to/treated with Shikonin at concentrations ranging from 0.01 to 100 μM. The optimal concentration was determined by cell proliferation and migration assays. Type I collagen and fibronectin synthesis, the gene expression of vascular endothelial growth factor (VEGF) and FN, and the phosphorylation of Extracellular signal-regulated kinase (ERK) 1/2 were investigated. Identical experiments were performed in the presence of PD98059 our data suggest, a specific ERK 1/2 inhibitor. Shikonin significantly promoted hGF proliferation and migration. Shikonin (1 µM) was chosen as the optimal concentration. Shikonin promoted type I collagen and FN synthesis, increased VEGF and FN expression, and induced ERK 1/2 phosphorylation. These changes were partially suppressed by PD98059. In conclusion, Shikonin promoted the proliferation, migration, type I collagen and FN synthesis, and expression of VEGF and FN via ERK 1/2 signaling pathway in hGFs. Therefore, shikonin may promote periodontal tissue wound healing.


2021 ◽  
Author(s):  
Sina Taefehshokr ◽  
Sahar Safaei ◽  
Amin Mahmoudpour ◽  
Ehsan Mikaeili ◽  
Mohammad Amini ◽  
...  

Abstract MicroRNAs (miRs) as non-coding RNAs have been generating widespread interest in cancer diagnosis and treatment. Among the previously studied miRs, miR-612 has been addressed to have a tumor suppressor function in all types of the studied cancers except esophageal squamous cell carcinoma. Despite this interest, the exact function of miR-612 in breast cancer (BC) remains elusive. Within the framework of these criteria, we tried to study the role of miR-612 in BC development. The human BC cell lines, MDA-MB-231 and MDA-MB-468 were transfected with miR-612. The effects of miR-612 replacement on viability, migration, invasion, cell cycle, apoptosis, and colony formation were studied in vitro. Furthermore, the protein expression of AKT and ERK were evaluated by Western blotting analysis. The results indicated that miR-612 decreased cell viability, migration, invasion, and colony formation of BC cells. Moreover, apoptosis was augmented, and thus cell cycle arrest was induced. Also, miR-612 decreased the expression and phosphorylation of proteins of the AKT/ERK signaling pathway. We suggest that miR-612-related stimulatory effects on apoptosis and its inhibitory impacts on proliferation and migration of BC cells mediates partly by suppressing the AKT/ERK signaling pathway.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Jiong Ma ◽  
Chunxia Zhou ◽  
Xuejun Chen

Abstract Background Hedgehog (Hh) signaling pathway, which is essential for cell proliferation and differentiation, is noted to be aberrantly activated in tumor from increasing studies in recent years. MicroRNAs (miRNAs) as an important non-coding RNA in cells have been proven to possess a regulatory role specific to the Hh signaling pathway. Here, in vitro and in vivo cellular/molecular experiments were adopted to clarify the regulatory mechanism linking miR-636 to the Hh signaling pathway in ovarian cancer (OVC). Methods Protein–protein interaction analysis was performed to identify the hub gene in the Hh pathway. TargetScan database was used to predict the potential upstream regulators for Gli2. qRT-PCR was performed to test the expression of miR-636, while Western blot was conducted to detect the expression of proteins related to the Hh pathway and epithelial-mesenchymal transition (EMT). For cell functional experiments, HO-8910PM OVC cell line was used. MTT assay and wound healing assay were used to measure the effect of miR-636 on cell proliferation and migration. Flow cytometry was carried out to examine the effect of miR-636 on cell cycle, and Western blot was used to identify the change in expression of Hh and EMT-related proteins. Dual-luciferase reporter gene assay was implemented to detect the targeting relationship between miR-636 and Gli2. Xenotransplantation models were established for in vivo examination. Results Gli2 was identified as the hub gene of the Hh pathway and it was validated to be regulated by miR-636 based on the data from TargetScan and GEO databases. In vitro experiments discovered that miR-636 was significantly lowly expressed in OVC cell lines, and overexpressing miR-636 significantly inhibited HO-8910PM cell proliferation, migration and induced cell cycle arrest in G0/G1 phase, while the inhibition of miR-636 caused opposite results. Dual-luciferase reporter gene assay revealed that Gli2 was the target gene of miR-636 in OVC. Besides, overexpressed miR-636 decreased protein expression of Gli2, and affected the expression of proteins related to the Hh signaling pathway and EMT. Rescue experiments verified that overexpression of Gli2 reversed the inhibitory effect of miR-636 on HO-8910PM cell proliferation and migration, and attenuated the blocking effect of miR-636 on cell cycle. The xenotransplantation experiment suggested that miR-636 inhibited cell growth of OVC by decreasing Gli2 expression. Besides, overexpressing Gli2 potentiated the EMT process of OVC cells via decreasing E-cadherin protein expression and increasing Vimentin protein expression, and it reversed the inhibitory effect of miR-636 on OVC cell proliferation in vivo. Conclusion miR-636 mediates the activation of the Hh pathway via binding to Gli2, thus inhibiting EMT, suppressing cell proliferation and migration of OVC. Trial registration: The experimental protocol was established, according to the ethical guidelines of the Helsinki Declaration and was approved by the Human Ethics Committee of The Second Affiliated hospital of Zhejiang University School of Medicine (IR2019001235). Written informed consent was obtained from individual or guardian participants.


2021 ◽  
Vol 53 (4) ◽  
pp. 454-462
Author(s):  
Ting Li ◽  
Xiaomin Zuo ◽  
Xiangling Meng

Abstract Circular RNAs (circRNAs) play either oncogenic or tumor suppressive roles in gastric cancer (GC). A previous study demonstrated that circ_002059, a typical circRNA, was downregulated in GC tissues. However, the role and mechanism of circ_002059 in GC development are still unknown. In this study, the levels of circ_002059, miR-182, and metastasis suppressor-1 (MTSS1) were examined by real-time quantitative polymerase chain reaction and western blot analysis. Cell proliferation and migration were evaluated by MTT assay and Transwell migration assay, respectively. The interactions between miR-182 and circ_002059 or MTSS1 were analyzed by dual-luciferase reporter assay. A GC xenograft model was established to validate the role of circ_002059 in GC progression in vivo. Overexpression of circ_002059 significantly inhibited, whereas knockdown of circ_002059 notably facilitated, cell proliferation and migration in GC cells. MTSS1 was found to be a direct target of miR-182 and circ_002059 upregulated MTSS1 expression by competitively sponging miR-182. Transfection with miR-182 mimic and MTSS1 silencing abated the inhibitory effect of circ_002059 on GC progression. Circ_002059 inhibited GC cell xenograft tumor growth by regulating miR-182 and MTSS1 expression. Collectively, Circ_002059 inhibited GC cell proliferation and migration in vitro and xenograft tumor growth in mice, by regulating the miR-182/MTSS1 axis.


2018 ◽  
Vol Volume 11 ◽  
pp. 7019-7029 ◽  
Author(s):  
Sasikamon Khophai ◽  
Malinee Thanee ◽  
Anchalee Techasen ◽  
Nisana Namwat ◽  
Poramate Klanrit ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document