G12/13 Pathways Potentiate Akt Phosphorylation in Platelets Mediated by Gi/Gz Pathways in a Src Kinase-Dependent Manner.

Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 1570-1570
Author(s):  
Soochong Kim ◽  
Jianguo Jin ◽  
Satya P. Kunapuli

Akt is a serine/threonine kinase that is activated by various agonists including thrombin and ADP in platelets, and activation of Akt in platelets is known to require Gi signaling pathways. Even though thrombin-induced Akt phosphorylation depends on secretion/Gi pathways, thrombin caused much stronger Akt phosphorylation than ADP and epinephrine. In this study, we investigated the contribution of G12/13 pathways to Akt phosphorylation mediated by Gi or Gz pathways. We used selective agonists to activate different G protein pathways. PAR4-activating peptide (AYPGKF) and thrombin failed to induce Akt phosphorylation in Gαq-deficient platelets, but Akt phosphorylation was restored to the levels achieved by AYPGKF and thrombin in wild-type platelets by selective supplement of either Gi or Gz signaling with 2-MeSADP and epinephrine, respectively. This phosphorylation of Akt was dramatically inhibited in the presence of PP2 (4-amino-5-(4-chlorophenyl)-7-(t-butyl)pyrazole[3,4-d]pyrimidine), an inhibitor of Src family tyrosine kinase, but not by PP3, an inactive structural analog. Importantly, AYPGKF and thrombin induced the activation of Src kinase in Gαq-deficient platelets, suggesting the involvement of Src-dependent pathways in the G12/13 signaling in potentiation of Akt phosphorylation. When human platelets were stimulated with low concentrations of YFLLRNP, a PAR1-specific partial agonist, to selectively activate the G12/13 signaling cascade, Akt phosphorylation did not occur. However, combined stimulation of YFLLRNP-mediated G12/13 signaling and selective activation of Gi pathways caused the Akt phosphorylation. This Akt phosphorylation was blocked by the P2Y12 receptor antagonist AR-C69931MX, or the PI 3-kinase inhibitor LY294002. Platelet aggregation induced by co-activation of both G12/13 and Gi signaling was dramatically inhibited by ML-9 (1-(5-chloronaphthalene-1-sulfonyl)-1H-hexahydro-1,4-diazepine hydrochloride), an Akt selective inhibitor, suggesting an important role of Akt in platelet aggregation stimulated by combined G12/13 and Gi pathways. These data demonstrate that G12/13 signaling alone does not cause Akt phosphorylation in platelets, but G12/13 signaling has a significant role in potentiating Akt phosphorylation mediated by selective Gi or Gz signaling in human as well as mouse platelets. Finally, we conclude that Src family kinases play an important role in this Akt phosphorylation in platelets.

1996 ◽  
Vol 76 (03) ◽  
pp. 439-443 ◽  
Author(s):  
Masaru Ido ◽  
Shinya Kato ◽  
Hiroyuki Ogawa ◽  
Kenji Hayashi ◽  
Yoshihiro Komada ◽  
...  

SummaryThrombin stimulation induces a dramatic increase in the activity of the 33-kDa serine/threonine kinase (PK33) in human platelets (10). The Arg-Gly-Asp (RGD) peptide, an inhibitor of the thrombin-mediated aggregation of platelets, did not affect the PK33 activation induced by thrombin suggesting that the activation of this kinase occurs independently from platelet aggregation. To identify a potential role of Ca2+ and calmodulin in the regulation of PK33, the effect of several Ca2+/calmodulin inhibitors on the thrombin-induced activation of PK33 was assessed using denaturation/renaturation method. Pretreatment of platelets with EGTA decreased the maximum PK33 activity induced by thrombin. The chelation of both the extra- and the intracellular Ca2+ by EGTA and by acetoxymethyl ester of 5,5′ -dimethyl-bis-(<9-aminophen-oxy) ethane-N,N,N′,N′-tetraacetic acid (BAPTA-AM) decreased further the PK33 activation by thrombin. Preincubation of platelets with the anticalmodulin agent, N-(4-aminobutyl)-5-chloro-2-naphtha-lenesulfonamide (W13), inhibited markedly the activation of PK33 by thrombin, whereas the inactive structural analog N-(4-aminobutyl)-2-naphthalenesulfonamide (W12) and the myosin light chain kinase inhibitor 1 -(5-chloronaphthalene-1 -sulfonyl)-1 H-hexahydro-1,4-diaze-pine (ML9) showed very weak inhibitory effects. Treatment of resting platelets with the calcium ionophore, A23187, activated PK33 in a dose-dependent manner; phorbol 12-myristate 13-acetate enhanced this effect. However, the two foregoing agents did not induce similar degree of PK33 activities as thrombin. These results indicate that the activation of PK33 is independent of the formation of the GPIIb/IIIa-fibrinogen complex and that it might be regulated by a Ca2+-dependent pathway.


2013 ◽  
Vol 109 (06) ◽  
pp. 1131-1140 ◽  
Author(s):  
Todd M. Getz ◽  
Bhanu Manne ◽  
Lorena Buitrago ◽  
Yingying Mao ◽  
Satya P. Kunapuli

SummaryIn our attempt to find a physiological agonist that activates PAR3 receptors, we screened several coagulation proteases using PAR4 null platelets. We observed that FXIIa and heat inactivated FXIIa, but not FXII, caused platelet aggregation. We have identified a contaminant activating factor in FXIIa preparation as dextran sulfate (DxS), which caused aggregation of both human and mouse platelets. DxS-induced platelet aggregation was unaffected by YM254890, a Gq inhibitor, but abolished by pan-Src family kinase (SFK) inhibitor PP2, suggesting a role for SFKs in this pathway. However, DxS-induced platelet aggregation was unaffected in FcRγ-chain null murine platelets, ruling out the possibility of glycoprotein VI-mediated events. More interesting, OXSI-2 and Go6976, two structurally unrelated inhibitors shown to affect Syk, had only a partial effect on DxS-induced PAC-1 binding. DxS-induced platelet aggregation and intracellular calcium increases were abolished by the pan PI-3 kinase inhibitor LY294002, or an isoform-specific PI-3 kinase β inhibitor TGX-221. Pretreatment of platelets with Syk inhibitors or ADP receptor antagonists had little effect on Akt phosphorylation following DxS stimulation. These results, for the first time, establish a novel tyrosine kinase pathway in platelets that causes fibrinogen receptor activation in a PI-3 kinase-dependent manner without a crucial role for Syk.


2018 ◽  
Vol 115 (11) ◽  
pp. 1672-1679 ◽  
Author(s):  
Qi Ma ◽  
Weilin Zhang ◽  
Chongzhuo Zhu ◽  
Junling Liu ◽  
Quan Chen

Abstract Aims AKT kinase is vital for regulating signal transduction in platelet aggregation. We previously found that mitochondrial protein FUNDC2 mediates phosphoinositide 3-kinase (PI3K)/phosphatidylinositol-3,4,5-trisphosphate (PIP3)-dependent AKT phosphorylation and regulates platelet apoptosis. The aim of this study was to evaluate the role of FUNDC2 in platelet activation and aggregation. Methods and results We demonstrated that FUNDC2 deficiency diminished platelet aggregation in response to a variety of agonists, including adenosine 5′-diphosphate (ADP), collagen, ristocetin/VWF, and thrombin. Consistently, in vivo assays of tail bleeding and thrombus formation showed that FUNDC2-knockout mice displayed deficiency in haemostasis and thrombosis. Mechanistically, FUNDC2 deficiency impairs the phosphorylation of AKT and downstream GSK-3β in a PI3K-dependent manner. Moreover, cGMP also plays an important role in FUNDC2/AKT-mediated platelet activation. This FUNDC2/AKT/GSK-3β/cGMP axis also regulates clot retraction of platelet-rich plasma. Conclusion FUNDC2 positively regulates platelet functions via AKT/GSK-3β/cGMP signalling pathways, which provides new insight for platelet-related diseases.


2017 ◽  
Vol 313 (3) ◽  
pp. C340-C351 ◽  
Author(s):  
Chongxu Zhang ◽  
Crystal Adamos ◽  
Myung-Jin Oh ◽  
Jugajyoti Baruah ◽  
Manuela A. A. Ayee ◽  
...  

Oxidized modifications of LDL (oxLDL) play a key role in the development of endothelial dysfunction and atherosclerosis. However, the underlying mechanisms of oxLDL-mediated cellular behavior are not completely understood. Here, we compared the effects of two major types of oxLDL, copper-oxidized LDL (Cu2+-oxLDL) and lipoxygenase-oxidized LDL (LPO-oxLDL), on proliferation of human aortic endothelial cells (HAECs). Cu2+-oxLDL enhanced HAECs’ proliferation in a dose- and degree of oxidation-dependent manner. Similarly, LPO-oxLDL also enhanced HAEC proliferation. Mechanistically, both Cu2+-oxLDL and LPO-oxLDL enhance HAEC proliferation via activation of Rho, Akt phosphorylation, and a decrease in the expression of cyclin-dependent kinase inhibitor 1B (p27kip1). Both Cu2+-oxLDL or LPO-oxLDL significantly increased Akt phosphorylation, whereas an Akt inhibitor, MK2206, blocked oxLDL-induced increase in HAEC proliferation. Blocking Rho with C3 or its downstream target ROCK with Y27632 significantly inhibited oxLDL-induced Akt phosphorylation and proliferation mediated by both Cu2+- and LPO-oxLDL. Activation of RhoA was blocked by Rho-GDI-1, which also abrogated oxLDL-induced Akt phosphorylation and HAEC proliferation. In contrast, blocking Rac1 in these cells had no effect on oxLDL-induced Akt phosphorylation or cell proliferation. Moreover, oxLDL-induced Rho/Akt signaling downregulated cell cycle inhibitor p27kip1. Preloading these cells with cholesterol, however, prevented oxLDL-induced Akt phosphorylation and HAEC proliferation. These findings provide a new understanding of the effects of oxLDL on endothelial proliferation, which is essential for developing new treatments against neovascularization and progression of atherosclerosis.


2019 ◽  
Vol 3 (3) ◽  
pp. 275-287 ◽  
Author(s):  
Caroline Kardeby ◽  
Knut Fälker ◽  
Elizabeth J. Haining ◽  
Maarten Criel ◽  
Madelene Lindkvist ◽  
...  

Abstract Fucoidans are sulfated fucose-based polysaccharides that activate platelets and have pro- and anticoagulant effects; thus, they may have therapeutic value. In the present study, we show that 2 synthetic sulfated α-l-fucoside-pendant glycopolymers (with average monomeric units of 13 and 329) and natural fucoidans activate human platelets through a Src- and phosphatidylinositol 3-kinase (PI3K)–dependent and Syk-independent signaling cascade downstream of the platelet endothelial aggregation receptor 1 (PEAR1). Synthetic glycopolymers and natural fucoidan stimulate marked phosphorylation of PEAR1 and Akt, but not Syk. Platelet aggregation and Akt phosphorylation induced by natural fucoidan and synthetic glycopolymers are blocked by a monoclonal antibody to PEAR1. Direct binding of sulfated glycopolymers to epidermal like growth factor (EGF)–like repeat 13 of PEAR1 was shown by avidity-based extracellular protein interaction screen technology. In contrast, synthetic glycopolymers and natural fucoidans activate mouse platelets through a Src- and Syk-dependent pathway regulated by C-type lectin-like receptor 2 (CLEC-2) with only a minor role for PEAR1. Mouse platelets lacking the extracellular domain of GPIbα and human platelets treated with GPIbα-blocking antibodies display a reduced aggregation response to synthetic glycopolymers. We found that synthetic sulfated glycopolymers bind directly to GPIbα, substantiating that GPIbα facilitates the interaction of synthetic glycopolymers with CLEC-2 or PEAR1. Our results establish PEAR1 as the major signaling receptor for natural fucose-based polysaccharides and synthetic glycopolymers in human, but not in mouse, platelets. Sulfated α-l-fucoside-pendant glycopolymers are unique tools for further investigation of the physiological role of PEAR1 in platelets and beyond.


Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 3904-3904
Author(s):  
Samantha Baldassarri ◽  
Alessandra Bertoni ◽  
Paolo Lova ◽  
Stefania Reineri ◽  
Chiara Sarasso ◽  
...  

Abstract 2-Arachidonoylglycerol (2-AG) is a naturally occurring monoglyceride that activates cannabinoid receptors and meets several key requisites of an endogenous cannabinoid substance. It is present in the brain and hematopoietic cells, including macrophages, lymphocytes and platelets. 2-AG is released from cells in a stimulus-dependent manner and is rapidly eliminated by uptake into cells and enzymatic hydrolysis in arachidonic acid and glycerol. 2-AG might exert a very fine control on platelet function either through mechanisms intertwining with the signal transduction pathways used by platelet agonists or through mechanisms modulating specific receptors. The aim of this study was to define the role of 2-AG in human platelets and characterize the mechanisms by which it performs its action. Platelets from healthy donors were isolated from plasma by differential centrifugations and gel-filtration on Sepharose 2B. The samples were incubated with 2-AG (10–100 μM) under constant stirring in the presence or absence of various inhibitors. Platelet aggregation was measured by Born technique. We have found that stimulation of human platelets with 2-AG induced irreversible aggregation, which was significantly enhanced by co-stimulation with ADP (1–10 μM). Furthermore, 2-AG-dependent platelet aggregation was completely inhibited by ADP scavengers, aspirin, and Rho kinase inhibitor, as well as by antagonists of the 2-AG receptor (CB2), of the ADP P2Y12 receptor, and of the thromboxane A2 receptor. We further investigated the role of endocannabinoids on calcium mobilization. Intracellular [Ca2+] was measured using FURA-2-loaded platelets prewarmed at 37°C under gentle stirring in a spectrofluorimeter. 2-AG induced rapid increase of cytosolic [Ca2+] in a dose-dependent manner. This effect was partially blocked by ADP scavengers and CB2 receptor antagonists. Furthermore, 2-AG-induced [Ca2+] mobilization was totally suppressed by aspirin or the thromboxane A2 receptor antagonist. These results suggest that 2-AG is able to trigger platelet activation, and that this action is partially mediated by CB2 receptor and ADP. Furthmore, 2-AG-dependent platelet activation is totally dependent on thromboxane A2 generation.


2006 ◽  
Vol 290 (5) ◽  
pp. F1202-F1212 ◽  
Author(s):  
Neil G. Docherty ◽  
Orfhlaith E. O'Sullivan ◽  
Declan A. Healy ◽  
Madeline Murphy ◽  
Amanda J. O'Neill ◽  
...  

Apoptosis and epithelial-mesenchymal transdifferentiation (EMT) occur in stressed tubular epithelial cells and contribute to renal fibrosis. Transforming growth factor (TGF)-β1 promotes these responses and we examined whether the processes were interdependent in vitro. Direct (caspase inhibition) and indirect [epidermal growth factor (EGF) receptor stimulation] strategies were used to block apoptosis during TGF-β1 stimulation, and the subsequent effect on EMT was assessed. HK-2 cells were exposed to TGF-β1 with or without preincubation with ZVAD-FMK (pan-caspase inhibitor) or concomitant treatment with EGF plus or minus preincubation with LY-294002 (PI3-kinase inhibitor). Cells were then assessed for apoptosis and proliferation by flow cytometry, crystal violet assay, and Western blotting. Markers of EMT were assessed by microscopy, immunofluorescence, real-time RT-PCR, Western blotting, PAI-1 reporter assay, and collagen gel contraction assay. TGF-β1 caused apoptosis and priming for staurosporine-induced apoptosis. This was blocked by ZVAD-FMK. However, ZVAD-FMK did not prevent EMT following TGF-β1 treatment. EGF inhibited apoptosis and facilitated TGF-β1 induction of EMT by increasing proliferation and accentuating E-cadherin loss. Additionally, EGF significantly enhanced TGF-β1-induced collagen I gel contraction. EGF increased Akt phosphorylation during EMT, and the prosurvival effect of this was confirmed using LY-294002, which reduced EGF-induced Akt phosphorylation and reversed its antiapoptotic and proproliferatory effects. TGF-β1 induces EMT independently of its proapoptotic effects. TGF-β1 and EGF together lead to EMT. EGF increases proliferation and resistance to apoptosis during EMT in a PI3-K Akt-dependent manner. In vivo, EGF receptor activation may assist in the selective survival of a transdifferentiated, profibrotic cell type.


1999 ◽  
Vol 8 (4-5) ◽  
pp. 205-209 ◽  
Author(s):  
G. Valacchi ◽  
Velio Bocci

In a previous work we have shown that heparin, in the presence of ozone (O3), promotes a dose-dependent platelet aggregation, while after Ca2+chelation with citrate, platelet aggregation is almost negligible. These results led us to think that aggregation may enhance the release of platelet components. We have here shown that indeed significantly higher amount of platelet-derived growth factor (PDGF), transforming growth factor β1 (TGF-β1) and interleukin-8(IL-8) are released in a dose-dependent manner after ozonation of heparinised platelet-rich plasma samples. These findings may explain the enhanced healing of torpid ulcers in patients with chronic limbischemia treated with O3autohaemoteraphy (O3-AHT).


2012 ◽  
Vol 2012 ◽  
pp. 1-10 ◽  
Author(s):  
Ye-Ming Lee ◽  
Kuo-Hsien Hsieh ◽  
Wan-Jung Lu ◽  
Hsiu-Chu Chou ◽  
Duen-Suey Chou ◽  
...  

Xanthohumol is the principal prenylated flavonoid in the hop plant (Humulus lupulusL.). Xanthohumol was found to be a very potent cancer chemopreventive agent through regulation of diverse mechanisms. However, no data are available concerning the effects of xanthohumol on platelet activation. The aim of this paper was to examine the antiplatelet effect of xanthohumol in washed human platelets. In the present paper, xanthohumol exhibited more-potent activity in inhibiting platelet aggregation stimulated by collagen. Xanthohumol inhibited platelet activation accompanied by relative [Ca2+]imobilization, thromboxane A2formation, hydroxyl radical (OH●) formation, and phospholipase C (PLC)γ2, protein kinase C (PKC), mitogen-activated protein kinase (MAPK), and Akt phosphorylation. Neither SQ22536, an inhibitor of adenylate cyclase, nor ODQ, an inhibitor of guanylate cyclase, reversed the xanthohumol-mediated inhibitory effect on platelet aggregation. Furthermore, xanthohumol did not significantly increase nitrate formation in platelets. This study demonstrates for the first time that xanthohumol possesses potent antiplatelet activity which may initially inhibit the PI3-kinase/Akt, p38 MAPK, and PLCγ2-PKC cascades, followed by inhibition of the thromboxane A2formation, thereby leading to inhibition of [Ca2+]iand finally inhibition of platelet aggregation. Therefore, this novel role of xanthohumol may represent a high therapeutic potential for treatment or prevention of cardiovascular diseases.


1995 ◽  
Vol 74 (03) ◽  
pp. 938-942 ◽  
Author(s):  
Jamal Lebrazi ◽  
Gérard Helft ◽  
Mustapha Abdelouahed ◽  
Ismaïl Elalamy ◽  
Massoud Mirshahi ◽  
...  

SummaryExposure to streptokinase (SK) elicits anti-SK antibodies (Abs), which inhibit fibrinolysis and induce platelet aggregation. The mechanism of the latter is not fully understood, although it seems to involve platelet binding by a plasminogen streptokinase and anti-SK ternary complex. Anti-SK Abs were purified by affinity chromatography from serum of patients having received SK for acute myocardial infarction (AMI), and were shown to be of the IgG type. Their effects were studied with (i) human platelets in citrated plasma in the presence of SK or acetylated plasminogen-SK activator complex (APSAC), and (ii) in washed platelets, resuspended in Tyrode buffer after lowering the ionic strength, in the presence of APSAC (which provides both SK and plasminogen). An antibody concentration-response curve was obtained, showing a plateau in the presence of 0.1 mg/ml IgG. By increasing the concentration of APSAC, we obtained a unimodal response curve, the optimal concentration of APSAC being 0.05 U/ml. Aggregation was suppressed by chelating calcium with EDTA, blocking fibrinogen binding by the synthetic peptide Arg-Gly-Asp-Ser (RGDS), and raising intraplatelet cAMP with Iloprost (a prostacyclin analogue). Aggregation required the interaction of the anti-SK Ab Fc domain with the platelet Fc-gamma receptor type II, also known as CD32, since: (i) it was blocked by the monoclonal antibody IV-3 directed against CD32, (ii) it did not occur with F(ab)’2 fragments, which block the response to the intact IgG. The clinical relevance of these platelet-activating anti-SK antibodies remains to be determined. Two factors might influence clinical outcome: (i) the amount and type of pre-existing anti-SK Abs; (ii) the known interindividual variability of the platelet response to binding and activation by IgG involving the CD32 molecule.


Sign in / Sign up

Export Citation Format

Share Document