Gene Expression Profiles in Acute Myeloid Leukemias (AML): A Novel Approach Using SAGE and Custom Microarray.

Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 197-197
Author(s):  
Sanggyu Lee ◽  
JianJun Chen ◽  
Guolin Zhou ◽  
Edward Touma ◽  
Run Shi ◽  
...  

Abstract Chromosome translocations are among the most common genetic abnormalities in human leukemia. Each translocation may affect a different pair of genes. The abnormally expressed genes that result from the different translocations provide a rich source for identifying specific markers for clinical diagnosis of each translocation. Microarrays have identified genes differentially expressed in different translocations but the results between laboratories are not always compatible. We used SAGE to quantitate gene expression in bone marrow (BM) samples from 22 patients with four types of AML, namely de novo AML M2 with t(8;21), AML M3 or M3V with t(15;17), AML M4Eo with inv(16), AML M5 with t(9;11) or secondary t(9;11).We generated SAGE libraries from CD15+ leukemic myeloid progenitor cells, collecting over 106 SAGE tags, of which 209,486 were unique tags; 136,010 were known genes and ESTs, and 73,476 were novel transcripts. SAGE tags for further analysis were selected based on a 5-fold difference between patients’ samples and normal CD15+ BM; they were also statistically significantly different at the 5 % level. Using these strict criteria, we identified 1,571 unique tags, of which 1,405 were known genes and ESTs, and 166 were novel transcripts that were either specific for each translocation or were common for all four translocations. Changes in expression of these known genes which fall into different gene ontogeny functional categories varied by translocation. For example, those associated with macromolecular biosynthesis, transport and transcription were most altered in the t(8;21); those related to defense response and apoptosis were altered in the t(15;17); cell proliferation genes were most affected by the t(9;11). Cell surface receptor signaling, intracellular signaling and RNA processing were altered in treatment related but not in de novo t(9;11). From this analysis, we identified the functional molecular signature of each translocation. We designed a custom microarray to validate our SAGE data analysis. Our initial pilot microarray experiment with 96 genes that were specific for each translocation or common for all translocations used mononuclear cells from normal and patient BM and translocation cell lines, ME-1, THP-1, Mono Mac-6, Kasumi 1, NB-4; the array data from BM matched the SAGE data for 48-75 % of genes and the majority of cell lines, except ME-1, matched at least 70 % with the SAGE results for the appropriate translocation. We have now designed a full-scale microarray that contains over 400 probes including 250 known genes, 61 ESTs, 45 novel sequences and 48 genes reported by others. We will test at least 100 patients’ samples with the four translocations to validate which genes provide a robust, reproducible “fingerprint” for each translocation and for all translocations. We will correlate our microarray data with age, sex, race, response to treatment, survival and other mutations (FLT3, MLL ITD, etc) to identify any transcripts that might reliably define these categories. Our results will provide new insights into genes that collaborate with each translocation to lead to a fully leukemic phenotype.

Blood ◽  
2005 ◽  
Vol 106 (11) ◽  
pp. 2996-2996
Author(s):  
Sanggyu Lee ◽  
Jianjun Chen ◽  
Goulin Zhou ◽  
Run Shi ◽  
Masha Kocherginsky ◽  
...  

Abstract Chromosome translocations are among the most common genetic abnormalities in human leukemia. The abnormally expressed genes from each translocation can be used to identify specific markers for clinical diagnosis of each translocation. Microarrays have identified genes differentially expressed in different translocations but the results between laboratories are not always compatible. We used SAGE to quantitate gene expression in bone marrow(BM) samples from 22 patients with four types of AML, [de novo AML M2 with t(8;21), AML M3 or M3V with t(15;17), AML M4Eo with inv(16), AML M5 with t(9;11) or secondary t(9;11)].We made SAGE libraries from CD15+ leukemic myeloid progenitor cells, collecting over 106 SAGE tags, of which 209,486 were unique tags; 136,010 were known genes and ESTs, and 73,476 were novel transcripts. SAGE tags for further analysis were selected based on a 5-fold difference between patient’s samples and normal CD15+ BM; they were also statistically significantly different at the 5% level. Using these strict criteria, we identified 2,381 unique tags, of which 2,053 were known genes and ESTs, and 328 were novel transcripts that were either specific for each translocation or were common(55) SAGE tags for all 4 translocations. The major change in all translocations was a decrease in expression in leukemia cells compared with normal cells; the decrease was least in the t(8;21) cells. Changes in expression of these known genes, which fall into different gene ontology functional categories, varied by translocation. Those associated with macromolecular biosynthesis, transport and transcription were most altered in the t(8;21); those related to defense response and apoptosis were altered in the t(15;17); cell proliferation genes were most affected by the t(9;11). From this analysis, we identified the functional molecular signature of each translocation. We designed a custom microarray to validate our SAGE data analysis. Our initial microarray contained 349 probes including 212 known genes, 61 ESTs, 28 novel sequences based on our data and 48 genes reported by others. We have now included 65 additional probes that appeared to be correlated with survival. Using 63 samples with the four translocations [16 inv(16), 4 t(9;11), 20 t(15;17), 4 t(8;21) and 19 other translocations], we are validating which genes provide a robust, reproducible “fingerprint” for each translocation, for all translocations, and which ones provide reliable information related to prognosis and survival. Our results will provide new insights into genes that collaborate with each translocation to lead to a fully leukemic phenotype as well as which genes appear to provide valid prognostic information.


Blood ◽  
2007 ◽  
Vol 110 (11) ◽  
pp. 242-242
Author(s):  
Olivier Decaux ◽  
Monique Clement ◽  
Florence Magrangeas ◽  
Laurence Lode ◽  
Catherine Charbonnel ◽  
...  

Abstract Pharmacogenomic profiles of genes involved in bortezomib - dexamethasone response may help to understand resistance and could provide new therapeutic targets as well as contributing to novel prognostic markers in multiple myeloma. We have used gene expression profiling to analyze the complex signaling pathways regulating the response to bortezomib - dexamethasone. Gene expression profiles were established in 9 cell lines, derived from 9 myeloma patients, incubated or not with a combination of bortezomib 10 nM and dexamethasone 1 μM. These concentrations correspond to the ones used for patients in the IFM 2005-01. Cells were collected after 6 hours of treatment. We focused our interest in early response genes, making the hypothesis that the comprehension of early effects would help to better understand the mechanisms of resistance that take place in at least two third of myeloma patients. Supervised analysis with permutations identified significantly up regulated genes involved in stress responses (heat shocks proteins, RTP801/dig2/REDD1/DDIT4), endoplasmic reticulum stress (HERP/HERPUD1, gadd145/CHOP/DDIT3), ubiquitin/proteasome pathway (proteasome 26S subunits PSMB7, PSMC4, PSMD3 and PSMD13), unfolded protein response (such as SQSTM1, ATF4) or redox equilibrium (PLRX, PRDX1). We assumed that these genes might represent a molecular signature of response to bortezomib and provide important insight into the complex mechanisms of action of these drugs. We focused on REDD1 a gene cloned in 2002 that is known to be rapidly induced by a wide variety of stress conditions (arsenic, hypoxia, dexamethasone, thapsigargin, tunimycin and heat shock) and DNA damages (ionizing radiation, ultraviolet radiation, DNA alkylant). We found that both REDD1 gene and protein expression were early and highly induced after bortezomib exposure alone or in combinaison with dexamethasone. This effect was dependent upon cell line: REDD1 was overexpressed within two hours in resistant cell lines in association with a cell size decrease while in sensitive cell lines, neither REDD1 induction nor morphological changes occured. REDD1 induction was associated with the dephosphorylation of S6K1, a key substrat of mTOR, a protein kinase which controls cell growth and cell size in response to various signals. SiRNA studies confirmed that bortezomib lead to a negative regulation of mRTor activity mediated by REDD1: disruption of REDD1 abrogates both S6K1 phosphorylation and early transitory cell size reduction. Our results are in accordance with data obtained in mouse showing an early regulation of mTOR pathway and cellular proliferation induced by REDD1 expression in response to stress. Our study suggests that mTOR regulation could be a resistance mechanism mediated by REDD1 expression. As we found that REDD1 was differentially induced in primary plasma cells from patients, this gene expression could help to predict response to bortezomib. Our objective is now to clarify the pathway that links bortezomib to REDD1 in multiple myeloma and to investigate REDD1 expression in patients enrolled in IFM 2005-01 clinical trial.


Blood ◽  
2005 ◽  
Vol 106 (3) ◽  
pp. 899-902 ◽  
Author(s):  
Myriam Alcalay ◽  
Enrico Tiacci ◽  
Roberta Bergomas ◽  
Barbara Bigerna ◽  
Elisa Venturini ◽  
...  

AbstractApproximately one third of acute myeloid leukemias (AMLs) are characterized by aberrant cytoplasmic localization of nucleophosmin (NPMc+ AML), consequent to mutations in the NPM putative nucleolar localization signal. These events are mutually exclusive with the major AML-associated chromosomal rearrangements, and are frequently associated with normal karyotype, FLT3 mutations, and multilineage involvement. We report the gene expression profiles of 78 de novo AMLs (72 with normal karyotype; 6 without major chromosomal abnormalities) that were characterized for the subcellular localization and mutation status of NPM. Unsupervised clustering clearly separated NPMc+ from NPMc– AMLs, regardless of the presence of FLT3 mutations or non–major chromosomal rearrangements, supporting the concept that NPMc+ AML represents a distinct entity. The molecular signature of NPMc+ AML includes up-regulation of several genes putatively involved in the maintenance of a stem-cell phenotype, suggesting that NPMc+ AML may derive from a multipotent hematopoietic progenitor.


BMC Genomics ◽  
2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Wiruntita Chankeaw ◽  
Sandra Lignier ◽  
Christophe Richard ◽  
Theodoros Ntallaris ◽  
Mariam Raliou ◽  
...  

Abstract Background A number of studies have examined mRNA expression profiles of bovine endometrium at estrus and around the peri-implantation period of pregnancy. However, to date, these studies have been performed on the whole endometrium which is a complex tissue. Consequently, the knowledge of cell-specific gene expression, when analysis performed with whole endometrium, is still weak and obviously limits the relevance of the results of gene expression studies. Thus, the aim of this study was to characterize specific transcriptome of the three main cell-types of the bovine endometrium at day-15 of the estrus cycle. Results In the RNA-Seq analysis, the number of expressed genes detected over 10 transcripts per million was 6622, 7814 and 8242 for LE, GE and ST respectively. ST expressed exclusively 1236 genes while only 551 transcripts were specific to the GE and 330 specific to LE. For ST, over-represented biological processes included many regulation processes and response to stimulus, cell communication and cell adhesion, extracellular matrix organization as well as developmental process. For GE, cilium organization, cilium movement, protein localization to cilium and microtubule-based process were the only four main biological processes enriched. For LE, over-represented biological processes were enzyme linked receptor protein signaling pathway, cell-substrate adhesion and circulatory system process. Conclusion The data show that each endometrial cell-type has a distinct molecular signature and provide a significantly improved overview on the biological process supported by specific cell-types. The most interesting result is that stromal cells express more genes than the two epithelial types and are associated with a greater number of pathways and ontology terms.


Oncogene ◽  
2002 ◽  
Vol 21 (42) ◽  
pp. 6549-6556 ◽  
Author(s):  
Jiafu Ji ◽  
Xin Chen ◽  
Suet Yi Leung ◽  
Jen-Tsan A Chi ◽  
Kent Man Chu ◽  
...  

2004 ◽  
Vol 18 (2) ◽  
pp. 167-183 ◽  
Author(s):  
Jianhua Zhang ◽  
Amy Moseley ◽  
Anil G. Jegga ◽  
Ashima Gupta ◽  
David P. Witte ◽  
...  

To understand the commitment of the genome to nervous system differentiation and function, we sought to compare nervous system gene expression to that of a wide variety of other tissues by gene expression database construction and mining. Gene expression profiles of 10 different adult nervous tissues were compared with that of 72 other tissues. Using ANOVA, we identified 1,361 genes whose expression was higher in the nervous system than other organs and, separately, 600 genes whose expression was at least threefold higher in one or more regions of the nervous system compared with their median expression across all organs. Of the 600 genes, 381 overlapped with the 1,361-gene list. Limited in situ gene expression analysis confirmed that identified genes did represent nervous system-enriched gene expression, and we therefore sought to evaluate the validity and significance of these top-ranked nervous system genes using known gene literature and gene ontology categorization criteria. Diverse functional categories were present in the 381 genes, including genes involved in intracellular signaling, cytoskeleton structure and function, enzymes, RNA metabolism and transcription, membrane proteins, as well as cell differentiation, death, proliferation, and division. We searched existing public sites and identified 110 known genes related to mental retardation, neurological disease, and neurodegeneration. Twenty-one of the 381 genes were within the 110-gene list, compared with a random expectation of 5. This suggests that the 381 genes provide a candidate set for further analyses in neurological and psychiatric disease studies and that as a field, we are as yet, far from a large-scale understanding of the genes that are critical for nervous system structure and function. Together, our data indicate the power of profiling an individual biologic system in a multisystem context to gain insight into the genomic basis of its structure and function.


1994 ◽  
Vol 180 (4) ◽  
pp. 1547-1552 ◽  
Author(s):  
M G Cifone ◽  
R De Maria ◽  
P Roncaioli ◽  
M R Rippo ◽  
M Azuma ◽  
...  

Intracellular pathways leading from membrane receptor engagement to apoptotic cell death are still poorly characterized. We investigated the intracellular signaling generated after cross-linking of CD95 (Fas/Apo-1 antigen), a broadly expressed cell surface receptor whose engagement results in triggering of cellular apoptotic programs. DX2, a new functional anti-CD95 monoclonal antibody was produced by immunizing mice with human CD95-transfected L cells. Crosslinking of CD95 with DX2 resulted in the activation of a sphingomyelinase (SMase) in promyelocytic U937 cells, as well as in other human tumor cell lines and in CD95-transfected murine cells, as demonstrated by induction of in vivo sphingomyelin (SM) hydrolysis and generation of ceramide. Direct in vitro measurement of enzymatic activity within CD95-stimulated U937 cell extracts, using labeled SM vesicles as substrates, showed strong SMase activity, which required pH 5.0 for optimal substrate hydrolysis. Finally, all CD95-sensitive cell lines tested could be induced to undergo apoptosis after exposure to cell-permeant C2-ceramide. These data indicate that CD95 cross-linking induces SM breakdown and ceramide production through an acidic SMase, thus providing the first information regarding early signal generation from CD95, and may be relevant in defining the biochemical nature of intracellular messengers leading to apoptotic cell death.


Polymers ◽  
2021 ◽  
Vol 13 (23) ◽  
pp. 4117
Author(s):  
Y-h. Taguchi ◽  
Turki Turki

The development of the medical applications for substances or materials that contact cells is important. Hence, it is necessary to elucidate how substances that surround cells affect gene expression during incubation. In the current study, we compared the gene expression profiles of cell lines that were in contact with collagen–glycosaminoglycan mesh and control cells. Principal component analysis-based unsupervised feature extraction was applied to identify genes with altered expression during incubation in the treated cell lines but not in the controls. The identified genes were enriched in various biological terms. Our method also outperformed a conventional methodology, namely, gene selection based on linear regression with time course.


2021 ◽  
Vol 39 (15_suppl) ◽  
pp. e19521-e19521
Author(s):  
Bartlomiej Przychodzen

e19521 Background: Histone deacetylase inhibitors (HDACi) are small molecules that increase acetylation of lysine residues by blocking histone deactylases. These anticancer agents affect epigenetic and non-epigenetic gene expression resulting in cell cycle arrest of cancer cells. Furthermore HDACi can enhance its anti-tumor effects via the pharmacologic modulation of macrophage. Some HDACi’s such as Trichostatin A (TSA) can also affected the tumor immune microenvironment by suppressing the activity of infiltrating macrophages and inhibiting myeloid-derived suppressor cell recruiement (Li et al.,). Methods: We conducted a high throughput screen comparing gene expression profiles in known hematological cell lines to identify transcriptional signatures associated with TSA sensitivity obtained from GDSC. Results: We selected genes that showed at least 2fold expression difference and were statistically significant (p < 0.05). We identified 49 genes that were upregulated and 85 that were downregulated. The most significant results include multiple genes known to be correlated with the B-cell maturation process. We found that CD24 a small GPI linked glycoprotein expressed at the surface of most B lymphocyte precursors, neutrophils, epithelial cells and frequently found to be highly expressed in various hematological and solid neoplasms, was up/downregulatred by XX. Interestingly, CD24 plays a role in the activation and differentiation of the cells as bone marrow samples lacking CD24 resulted in decreased numbers of both pre-B and immature B-cell populations. We also found that IKZF2, a transcription factor regulating lymphocyte development and queiesence and which is frequently deleted in hypodiploid B-ALLs. This result could revelent as other reports suggest a role of IKZF2 as a tumor suppressor with a central role regulating the balance of self-renewal and differentiation in leukemic stem cells. Conclusions: Our study identified transcriptional profiles which suggest that TSA sensitivity could be related to B cell maturation. Further experiments warrant replication of these findings which could prove useful in creating optimal, TSA-based treatments acting either as potent single agents or in combination enhancing anti-tumor effects of immunotherapies.


Sign in / Sign up

Export Citation Format

Share Document