The Study of Effect and Mechanism by Vitamin K2 on Human MDS Cell Line MUTZ-1.

Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 4357-4357
Author(s):  
Bao-An Chen ◽  
Xin Xu ◽  
Ze-Ye Shao ◽  
Jia-Hua Ding ◽  
Guo-Hua Xia ◽  
...  

Abstract The myelodysplastic syndromes (MDS) are characterized by hemopoietic insufficiency associated with cytopenias leading to serious morbidity and the additional risk of leukemic transformation. Vitamin K2(VK2) is reported to induce apoptosis or differentiation of leukemic cell lines in vitro. For investigating the effects and mechanism of VK2 on human MDS cell line MUTZ-1 in vitro,we observed the changes of morphologic features of MUTZ-1 cells by exposing to VK2.The transmission electron microscope was used to observe the apoptosis of MUTZ-1 cells. Cellular proliferation was determined by the MTT assay. The flow cytometry was used to analysis apoptosis rate and the change of cell cycle. The expression of apoposis-related genes bcl-2, survivin and bax were detected by reverse transcriptase polymerase chain reaction(RT-PCR).The activity of caspase-3 was detected by chemiluminescence assay. After exposing to 10μmol L−1 and higher concentration of VK2, it could inhibit MUTZ-1 cells proliferation in a dose-and time-dependent manner(p<0.05). At concentration of 5μmol/l VK2 treatment, it might accelerate cellular proliferation, but there’s no significant difference compared with control group. Apoptosis peak on FCM and positive Annexin-V FITC/PI on cell membrane showed that VK2 induced apoptosis of MUTZ-1 cells in a dose-and-time-dependent manner, G0/G1 cell cycle arrest, significantly dow-regulated the expression of bcl-2 and survivin, but had no effect on the expression of bax.The activities of caspase-3 were significantly increased. Low concentration of VK2 could facilitate cell proliferation. The higher concentration of VK2 could induce apoptosis of MUTZ-1 cells. These results indicate that VK2 induces MUTZ-1 cells apoptosis by activating caspase-3 pathway, the apoptosis related genes bcl-2, survivin down-regulated might play an important role in this process.

Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 5042-5042
Author(s):  
Victor Maso ◽  
Andrana Calgarotto ◽  
Gilberto Franchi ◽  
Alexandre Nowill ◽  
José Vassallo ◽  
...  

Abstract Introduction Due to the molecular heterogeneity of myelodysplastic syndrome, therapies using single-target drugs are ineffectives. An orchestrated interplay between three important processes: apoptosis, autophagy and cell cycle has been implicated to new anti-cancer therapies. In this concern, natural compounds like quercetin are considered new chemicals for the development of drugs against various molecular targets. Quercetin is ubiquitously found in fruits and vegetables and several beneficial health effects have been associated with the dietary uptake of this bioflavonoid. Accordingly, the goal of this work was to identify the quercetin effects using P39 cell line, derived from a patient with MDS-chronic myelomonocytic leukemia (CMML), kindly provided by Eva Hellstrom-Lindberg, Karolinska Institute Stockholm, as model. Material and Methods P39 cell line was submitted, in our lab, to karyotyping which showed 46XY,+del(6),-9,-16,-17,+2mar, indicating that this cell line is not contaminated with HL-60. P39 cells were cultured in RPMI 1640 medium containing 10% fetal bovine serum (FBS), 100 U/ ml penicillin, 100 μg/ml streptomycin at 37°C in a humidified atmosphere containing 5% CO2. The quercetin was dissolved in DMSO, final concentration of 0.1% (v/v) in RPMI. P39 cells were treated with quercetin at final concentrations of 10, 50 or 100 µM for 24h. Control cells were treated with vehicle alone. The xenografted model was performed in immunodeficient mice (NOD.CB17-Prkdcscid/J lineage), (n= 6). Mice were inoculated, subcutaneously, with P39 cells (1x107cells/mice) in the dorsal region. Every 7 days the tumor volume was evaluated. The quercetin treatment started after tumors reached 100 to 200 mm3; it was given once every four days by intraperitoneal (i.p) injection at 120mg/Kg body. Control group received equal amounts of vehicle solution as previously described (Wang, et al., 2011). After 21 days, the mice were sacrificed; tumors were removed, minced and homogenized in protein extraction buffer or fixed in formalin immediately for immunohistochemistry. Then detection of apoptosis, autophagy and cell cycle process were performed. Results In vitro results show that quercetin inhibited proliferation of P39 cells in a dose-and-time dependent manner and that the cell death induced by quercetin is due to modulation of apoptotic process. The quercetin treatment decreased Bcl2 and McL-1 expression (anti-apoptotic proteins) and increased Bax, an important pro-apoptotic protein. We could also observe changes in membrane potencial (Dym) after quercetin treatment with concomitant release of cytochrome c from mitochondria into the cytosol and increased expression of caspase 9, 8 and 3. Quercetin induced a marked increase in the number of P39 cells in the G1- phase with reduction of CDK2, CDK6, cyclin D, cyclin E, cyclin A and phosphorylation of Rb. Our results also showed increased levels of both p21 and p27 after 24 hours of quercetin treatment. Quercetin promoted pronounced phosphorylation of ERK1/2 and JNK. Using the selective inhibitors PD184352 (ERK inhibitor) and SP600125 (JNK inhibitor) no differences in percentage of apoptotic cells were found after 24 h of incubation. On the other hand, the combination of quercetin and PD184352 or SP600125 significantly decreases the accumulation of P39 cells in the G1 phase. Formation of acidic vesicular organelles (AVOs) was observed in quercetin- treated P39 cells. Then, the main proteins related to the autophagy process were analyzed and we found increased expression of beclin-1 and PI3K class III, ATG5-ATG12, ATG7 and conversion of LC3-I to LC3-II. In addition, quercetin-mediated dephosphorylation of Akt and mTOR which are considered key negative regulators of autophagy. Pharmacological inhibition of autophagy enhanced quercetin-induced suppression of P39 cell growth with no modulation of quercetin in G1 phase of cell cycle. Our results in xenograft model show that after 21 days of quercetin treatment, there was reduction of 31.6% in tumor volume compared to control group. We also observed apoptosis, autophagy and cell cycle activation status in the tumor tissue of animals treated with quercetin and by immunohistochemistry we confirmed the upregulation of caspase 3, p21 and LC3-II confirming in vitro results. Disclosures: No relevant conflicts of interest to declare.


2020 ◽  
Vol 16 (3) ◽  
pp. 340-349
Author(s):  
Ebrahim S. Moghadam ◽  
Farhad Saravani ◽  
Ernest Hamel ◽  
Zahra Shahsavari ◽  
Mohsen Alipour ◽  
...  

Objective: Several anti-tubulin agents were introduced for the cancer treatment so far. Despite successes in the treatment of cancer, these agents cause toxic side effects, including peripheral neuropathy. Comparing anti-tubulin agents, indibulin seemed to cause minimal peripheral neuropathy, but its poor aqueous solubility and other potential clinical problems have led to its remaining in a preclinical stage. Methods: Herein, indibulin analogues were synthesized and evaluated for their in vitro anti-cancer activity using MTT assay (on the MCF-7, T47-D, MDA-MB231 and NIH-3T3 cell lines), annexin V/PI staining assay, cell cycle analysis, anti-tubulin assay and caspase 3/7 activation assay. Results: One of the compounds, 4a, showed good anti-proliferative activity against MCF-7 cells (IC50: 7.5 μM) and low toxicity on a normal cell line (IC50 > 100 μM). All of the tested compounds showed lower cytotoxicity on normal cell line in comparison to reference compound, indibulin. In the annexin V/PI staining assay, induction of apoptosis in the MCF-7 cell line was observed. Cell cycle analysis illustrated an increasing proportion of cells in the sub-G-1 phase, consistent with an increasing proportion of apoptotic cells. No increase in G2/M cells was observed, consistent with the absence of anti-tubulin activity. A caspase 3/7 assay protocol showed that apoptosis induction by more potent compounds was due to activation of caspase 3. Conclusion: Newly synthesized compounds exerted acceptable anticancer activity and further investigation of current scaffold would be beneficial.


2018 ◽  
Vol 51 (3) ◽  
pp. 1276-1286 ◽  
Author(s):  
Feng Liang ◽  
Yu-Gang Wang ◽  
Changcheng Wang

Background/Aims: This study aimed at investigating the effects of metformin on the growth and metastasis of esophageal squamous cell carcinoma (ESCC) in vitro and in vivo. Methods: Two human ESCC cell lines EC9706 and Eca109 were selected and challenged with metformin in this study. Western blot assay was performed to detect th level of Bcl-2, Bax and Caspase-3. Scratch wound assay, transwell assay and Millicell invasion assay were used to assay the invasion and migration of EC9706 and Eca109 cells. Nude mice tumor models were used to assay the growth and lung metastasis of ESCC cells after metformin treatment. The plasma glucose level was also assayed. Results: We found that metformin significantly inhibited proliferation and induced apoptosis of both ESCC cell lines in a dose- and time-dependent manner, and the expression of Bcl-2 was down-regulated and Bax and Caspase-3 were up-regulated. Metformin significantly inhibited the invasion and migration of EC9706 and Eca109 cells (p < 0.05). mRNA and protein levels of MMP-2 and MMP-9 decreased significantly upon treatment with metformin of 10mM for 12, 24 and 48h in a time-dependent manner (p < 0.05). In line with in vitro results, in vivo experiments demonstrated that metformin inhibited tumorigenicity, inhibited lung metastasis and down-regulated the expression of MMP-2 and MMP-9. Moreover, we showed that metformin treatment did not cause significant alteration in liver and renal functions and plasma glucose level. Conclusion: Our study for the first time demonstrated the anti-invasive and anti-metastatic effects of metformin on human ESCC cells both in vitro and in vivo, which might be associated with the down-regulation of MMP-2 and MMP-9. As a whole, our results indicate the potential of metformin to be developed as a chemotherapeutic agent for patients with ESCC and might stimulate future studies on this area.


Bionatura ◽  
2021 ◽  
Vol 6 (2) ◽  
pp. 1725-1732
Author(s):  
Hamdah Alsaeedi ◽  
Rowaid Qahwaji ◽  
Talal Qadah

Kola nut extracts have recently been reported to contain chemopreventive compounds providing several pharmacological benefits. This study investigated Kola nut extracts' anti-cancer activity on human immortalized myelogenous leukemia cell line K562 through apoptosis and cell cycle arrest. Fresh Kola nuts were prepared as powder and dissolved in DMSO. Different concentrations (50, 100, 150, 200, and 250 μg/ml) of working solutions were prepared. The K562 cells were treated with the different concentrations of Kola nut extract or vehicle control (10% DMSO) followed by incubation at 37°C for 24, 48, and 72 hours, respectively. Treatment activity was investigated in K562 cells; by Resazurin, and FITC/Propidium Iodide and 7-AAD stained cells to evaluate apoptotic cells and the cell cycle's progression. Inhibition of leukemia cell proliferation was observed. The extract effectively induced cell death, early and late apoptosis by approximately 30% after 24 and 48 hours incubation, and an increase in the rate of dead cells by 50% was observed after 72 hours of incubation. Also, cell growth reduction was seen at high dose concentrations (150 and 200 µg/ml), as evident by cell count once treated with Kola nut extract. The total number of apoptotic cells increased from 5.8% of the control group to 27.4% at 250 µg/ml concentration. Moreover, Kola nut extracts' effects on K562 cells increased gradually in a dose and time-dependent manner. It was observed that Kola nut extracts could arrest the cell cycle in the G2/M phase as an increase in the number of cells by 29.8% and 14.6 % were observed from 9.8% and 5.2% after 24 and 48 hours of incubation, respectively. This increase was detected in a dose and time-dependent manner. Kola nut extracts can be used as a novel anti-cancer agent in Leukemia treatment as it has shown significant therapeutic potential and therefore provides new insights in understanding the mechanisms of its action. Keywords: Kola nut extracts, Leukemia, K562 cell line, Apoptosis, Cancer.


Cancers ◽  
2020 ◽  
Vol 12 (2) ◽  
pp. 345
Author(s):  
Xi-Feng Jin ◽  
Gerald Spöttl ◽  
Julian Maurer ◽  
Svenja Nölting ◽  
Christoph Josef Auernhammer

Background and aims: Inhibition of Wnt/β-catenin signaling by specific inhibitors is currently being investigated as an antitumoral strategy for various cancers. The role of Wnt/β-catenin signaling in neuroendocrine tumors still needs to be further investigated. Methods: This study investigated the antitumor activity of the porcupine (PORCN) inhibitor WNT974 and the β-catenin inhibitor PRI-724 in human neuroendocrine tumor (NET) cell lines BON1, QGP-1, and NCI-H727 in vitro. NET cells were treated with WNT974, PRI-724, or small interfering ribonucleic acids against β-catenin, and subsequent analyses included cell viability assays, flow cytometric cell cycle analysis, caspase3/7 assays and Western blot analysis. Results: Treatment of NET cells with WNT974 significantly reduced NET cell viability in a dose- and time-dependent manner by inducing NET cell cycle arrest at the G1 and G2/M phases without inducing apoptosis. WNT974 primarily blocked Wnt/β-catenin signaling by the dose- and time-dependent downregulation of low-density lipoprotein receptor-related protein 6 (LRP6) phosphorylation and non-phosphorylated β-catenin and total β-catenin, as well as the genes targeting the latter (c-Myc and cyclinD1). Furthermore, the WNT974-induced reduction of NET cell viability occurred through the inhibition of GSK-3-dependent or independent signaling (including pAKT/mTOR, pEGFR and pIGFR signaling). Similarly, treatment of NET cells with the β-catenin inhibitor PRI-724 caused significant growth inhibition, while the knockdown of β-catenin expression by siRNA reduced NET tumor cell viability of BON1 cells but not of NCI-H727 cells. Conclusions: The PORCN inhibitor WNT974 possesses antitumor properties in NET cell lines by inhibiting Wnt and related signaling. In addition, the β-catenin inhibitor PRI-724 possesses antitumor properties in NET cell lines. Future studies are needed to determine the role of Wnt/β-catenin signaling in NET as a potential therapeutic target.


Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 5053-5053
Author(s):  
Jian Da Hu ◽  
Yi Huang ◽  
Yingyu Chen ◽  
Tiannan Wei ◽  
Tingbo Liu ◽  
...  

Abstract Baicalin is a traditional Chinese medicine with multiple biological effects. Some researches showed baicalin has anti-tumor effects in solid tumor, such as prostate cancer. In order to investigate its effects on proliferation inhibition and apoptosis induction in human lymphoma cell, we treated Burkitt lymphoma cell line CA46 with baicalin in vitro and in vivo of CA46 xenograft. Baicalin remarkably inhibited the cell proliferation, with an IC50 value of 10μM. Apoptosis was remarkably induced by baicalin in a dose-dependent manner, which was detected by Annexin V FITC/PI double staining analysis, TUNEL labeling method and DNA fragmentation respectively. Furthermore, RT-PCR showed that the mRNA expressions of c-myc and bcl-2 in treated CA46 cell decreased in a time-dependent manner. Western-Blot showed that the protein expressions of c-myc, bcl-2, procaspase-3 and PARP(116KD) in baicalin treated CA46 cell were down-regulated, while the expression of PARP(85KD) increased. Based on the results in vitro, we investigated in vivo efficacy of baicalin, alone or in combination with cytotoxic drug VP16, for treatment in CA46 nude mice xenograft. Baicalin with the dosage of 40mg/kg/d and 80kg/mg/d could remarkably inhibit the growth of the tumor compared with control group. Combination of baicalin and VP16 had better anti-tumor effects. Histological examination of tumor samples showed more necrotic cells in treated groups. And obvious apoptosis could be observed by electron microscope. No adverse events were found in treated groups. From above we could conclude that baicalin could efficiently induce proliferation inhibition and apoptosis of CA46 cells in vitro and in vivo, which may be related with the down-regulation of c-myc and bcl-2 expressions, as well as the up-regulation of caspase-3 activity.


Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. 3728-3728
Author(s):  
Lapo Alinari ◽  
Qing Liu ◽  
Ching-Shih Chen ◽  
Fengting Yan ◽  
James T Dalton ◽  
...  

Abstract Abstract 3728 Poster Board III-664 Over-expression of Cyclin D1 and constitutive phosphorylation of Akt has been implicated in the pathogenesis of mantle cell lymphoma (MCL). Here we describe FTY720 (fingolimod), an immunosuppressive agent currently being explored in phase III studies in renal transplantation and multiple sclerosis patients, to mediate time- and dose-dependent cell death in primary MCL cells (6 patients) and MCL cell lines, Jeko and Mino. FTY720-induced apoptosis was associated with reactive oxygen species (ROS) generation, Bax up-regulation but not associated with caspase 3 activation in MCL. FTY720 treatment resulted in time-dependent down-modulation of Cyclin D1 and phospho Akt (p-Akt) protein level, two critical disease-relevant molecules in the pathogenesis of MCL. Consistent with the modulation of Cyclin D1, FTY720-induced cell cycle arrest with accumulation of cells in G0/G1 and G2/M phases of the cell cycle with concomitant decrease in S phase entry. Importantly, FTY720 treatment was also associated with a time-dependent phospho Erk (p-Erk) induction in Mino and Jeko cells. To determine the in vivo efficacy of FTY720, we developed a preclinical, in vivo xenograft model of human MCL where MCL cell lines (Jeko, Mino and SP53) were engrafted into severe combined immune deficient (SCID) mice. Cell dose titration trials identified 4 × 107 Mino or Jeko cells injected intravenously via tail vein to result in consistent engraftment and fatal tumor burden in all mice. All mice engrafted with 4 × 107 Jeko cells developed a disseminated disease within 3 weeks and had a median survival of 28 days (compared to 43 days for Mino and 51 days for SP53). Because the Jeko cell line was established from the peripheral blood of a patient with blastic variant MCL and demonstrated a more resistant phenotype to several immuno-chemoterapeutic compounds, this cell line was chosen to create a more stringent in vivo preclinical model. SCID mice were treated with the monoclonal antibody TMβ1 to deplete murine NK cells, engrafted with 4 × 107 Jeko cells and observed daily for signs of tumor burden. Ten mice/group were treated starting at day 15 post-engraftment with intraperitoneal injection of 100 μl of saline or FTY720 (5 mg/kg resuspended in 100 μl of saline), every day, for two weeks. The median survival for FTY720-treated mice (N=10) was 38 days (95% CI:30-39) compared to 26.5 days (95% CI: 26-27 days) for the control group mice (N=10). The results from the log-rank test indicated an overall statistical significant difference in survival functions between the FTY720 treatment and the control group (p=0.001). These results provide the first evidence for a potential use of FTY720 in targeting key pathways that are operable in the pathogenesis of MCL and warrant the further investigation of FTY720 in combination with other agents in clinical trials treating patients with MCL. Disclosures: No relevant conflicts of interest to declare.


2021 ◽  
Author(s):  
Xin-Yu Li ◽  
Xin Zhou ◽  
Yu- Liu ◽  
Feng Qiu ◽  
Qing-Qing Zhao

Abstract Purpose: NeosedumosideIII (Neo) is a megastigmanes and belongs to monocyclic sesquiterpenoids compound with antioxidant, anti-inflammatory and other pharmacological activities. In order to explore the anti-cancer effect and possible mechanism of Neo, the study examined the anti-proliferation and apoptosis effect of Neo against human hepatocellular carcinoma HepG2 cells and SMMC-772 cells and related mechanism in vitro. Methods :The anti-proliferation effect of Neo was detected on HepG2 cells and SMMC-772 cells by MTT assay and IC50 with increasing dose and time. Cell cycle and apoptosis were detected by flow cytometer. The changes of Bcl-2, Bax, Caspase-3, Caspase-8 and Caspase-9 proteins were detected by western blotting.Results :The results indicated that Neo could inhibited proliferation of HepG2 cells and SMMC-772 cells in vitro and promoted apoptosis, it significantly induced apoptosis of HepG2 cells and SMMC-772 cells arrested cell cycle at G0/G1 phase in a dose-dependent manner, reduce the expression of Bcl-2 protein, and increase the expression of Bax and Caspase-3, Caspase-8 and Caspase-9 proteins. Conclusion:Neo could inhibit proliferation and induce apoptosis of HepG2 cells and SMMC-7721 cells in vivo which suggested that it might be served as a promising candidate for the treatment of liver cancer.


Molecules ◽  
2019 ◽  
Vol 24 (17) ◽  
pp. 3054 ◽  
Author(s):  
Phyu Phyu Myint ◽  
Thien T. P. Dao ◽  
Yeong Shik Kim

Background: This research aimed to investigate the cytotoxicity of methanol extract of Smallanthus sonchifolius leaf (YLE) against a human hepatocellular carcinoma cell line (HepG2). This plant is currently used as a traditional herbal remedy in the treatment of liver diseases in some rural parts of Myanmar. Methods: The cytotoxic activity of the plant extract against the cancerous cell line was assessed using an MTT assay. YLE demonstrated a significant effect (IC50 = 58.2 ± 1.9 μg/mL) on anti-cancer activity, which was further investigated using various assays including an in vitro cell migration assay, a colony formation assay, cell cycle analysis, western blot analysis, and a ROS assay. The significance of the phytochemical constituents of YLE could be identified using LC/Q-TOF-MS techniques. Results: We putatively identified the active components in YLE, which were possibly melampolide-type sesquiterpenoids. YLE showed an inhibitory effect on HepG2 cell proliferation and cell migration. YLE also induced cell cycle arrest and necrosis in a dose-dependent manner. Additionally, YLE significantly suppressed ROS formation in HepG2 cells. Conclusions: These findings suggest that YLE is sufficient for application as a promising anti-liver drug in herbal medicine.


Blood ◽  
2007 ◽  
Vol 110 (11) ◽  
pp. 4797-4797
Author(s):  
Mariateresa Fulciniti ◽  
Pierfrancesco Tassone ◽  
Teru Hideshima ◽  
Kenneth C. Anderson ◽  
Nikhil C. Munshi

Abstract Multiple Myeloma (MM) is a malignant proliferation of plasma cells characterized by disruption of cell cycle checkpoint controls which maintain G2M transition and/or mitosis. CDC2 is the cyclin-dependent kinase that normally drives cells into mitosis and is universally expressed in MM. To examine the biologic role of CDC2 in MM, we evaluated cellular and molecular effects of Terameprocol (M4N, tetra-O-methyl nordihydroguaiaretic acid) that has been shown to inhibit cell cycle progression at the G2/M phase by inhibiting the transcription of sp-1 dependent expression of CDC2. We observed that Terameprocol downregulated the expression of cdc2 in a time-dependent manner, with a maximal effect at 24h. This was associated with induction of G2/M growth arrest in a panel of MM cell lines (INA6, OPM1, OPM2, MM1S, RPMI-8226, U266), as determined by PI staining. Interestingly, Terameprocol treatment led to increase in p21waf1 protein levels. Importantly, we observed inhibition of DNA synthesis by Terameprocol in a dose- and time-dependent manner, with IC50 range from 1–20 uM for a 24 hours period of treatment, as assessed by 3H-thymidine uptake. Longer exposure of MM cells to Terameprocol resulted in cytoxicity, as assessed by MTT assay, via induction of apoptosis, evidenced by Annexin V+ /PI staining, in all the MM cell lines tested. Terameprocol -induced apoptosis is predominantly associated with caspase-9 and caspase-3, but not caspase-8 activation, suggesting that Terameprocol triggers intrinsic apoptotic pathway in MM cells. Our results show that genes that control entry and progression of G2/M phase, especially cdc2, may be an attractive target for MM therapy and Terameprocol represents a prototypic agent for the control of unregulated cellular proliferation in MM.


Sign in / Sign up

Export Citation Format

Share Document