scholarly journals Inhibition of Wnt/β-Catenin Signaling in Neuroendocrine Tumors In Vitro: Antitumoral Effects

Cancers ◽  
2020 ◽  
Vol 12 (2) ◽  
pp. 345
Author(s):  
Xi-Feng Jin ◽  
Gerald Spöttl ◽  
Julian Maurer ◽  
Svenja Nölting ◽  
Christoph Josef Auernhammer

Background and aims: Inhibition of Wnt/β-catenin signaling by specific inhibitors is currently being investigated as an antitumoral strategy for various cancers. The role of Wnt/β-catenin signaling in neuroendocrine tumors still needs to be further investigated. Methods: This study investigated the antitumor activity of the porcupine (PORCN) inhibitor WNT974 and the β-catenin inhibitor PRI-724 in human neuroendocrine tumor (NET) cell lines BON1, QGP-1, and NCI-H727 in vitro. NET cells were treated with WNT974, PRI-724, or small interfering ribonucleic acids against β-catenin, and subsequent analyses included cell viability assays, flow cytometric cell cycle analysis, caspase3/7 assays and Western blot analysis. Results: Treatment of NET cells with WNT974 significantly reduced NET cell viability in a dose- and time-dependent manner by inducing NET cell cycle arrest at the G1 and G2/M phases without inducing apoptosis. WNT974 primarily blocked Wnt/β-catenin signaling by the dose- and time-dependent downregulation of low-density lipoprotein receptor-related protein 6 (LRP6) phosphorylation and non-phosphorylated β-catenin and total β-catenin, as well as the genes targeting the latter (c-Myc and cyclinD1). Furthermore, the WNT974-induced reduction of NET cell viability occurred through the inhibition of GSK-3-dependent or independent signaling (including pAKT/mTOR, pEGFR and pIGFR signaling). Similarly, treatment of NET cells with the β-catenin inhibitor PRI-724 caused significant growth inhibition, while the knockdown of β-catenin expression by siRNA reduced NET tumor cell viability of BON1 cells but not of NCI-H727 cells. Conclusions: The PORCN inhibitor WNT974 possesses antitumor properties in NET cell lines by inhibiting Wnt and related signaling. In addition, the β-catenin inhibitor PRI-724 possesses antitumor properties in NET cell lines. Future studies are needed to determine the role of Wnt/β-catenin signaling in NET as a potential therapeutic target.

Molecules ◽  
2021 ◽  
Vol 26 (13) ◽  
pp. 3886
Author(s):  
Stefania Sut ◽  
Irene Ferrarese ◽  
Maria Giovanna Lupo ◽  
Nicola De Zordi ◽  
Elisa Tripicchio ◽  
...  

In the present study the ability of supercritical carbon dioxide (SCO2) extracts of M. longifolia L. leaves to modulate low-density lipoprotein receptor (LDLR) and proprotein convertase subtilisin/kexin type 9 (PCSK9) expression was evaluated in cultured human hepatoma cell lines Huh7 and HepG2. Two SCO2 extracts, one oil (ML-SCO2) and a semisolid (MW-SCO2), were subjected to detailed chemical characterization by mono- and bidimensional nuclear magnetic resonance (1D, 2D-NMR), gas chromatography coupled with mass spectrometry (GC-MS) and liquid chromatography coupled with mass spectrometry (LC-MS). Chemical analysis revealed significant amounts of fatty acids, phytosterols and terpenoids. ML-SCO2 was able to induce LDLR expression at a dose of 60 µg/mL in HuH7 and HepG2 cell lines. Furthermore, ML-SCO2 reduced PCSK9 secretion in a concentration-dependent manner in both cell lines. Piperitone oxide, the most abundant compound of the volatile constituent of ML-SCO2 (27% w/w), was isolated and tested for the same targets, showing a very effective reduction of PCSK9 expression. The overall results revealed the opportunity to obtain a new nutraceutical ingredient with a high amount of phytosterols and terpenoids using the SCO2 extraction of M. longifolia L., a very well-known botanical species used as food. Furthermore, for the first time we report the high activity of piperitone oxide in the reduction of PCSK9 expression.


Nutrients ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 2178
Author(s):  
Fabio Morandi ◽  
Veronica Bensa ◽  
Enzo Calarco ◽  
Fabio Pastorino ◽  
Patrizia Perri ◽  
...  

Neuroblastoma (NB) is the most common extra-cranial solid tumor of pediatric age. The prognosis for high-risk NB patients remains poor, and new treatment strategies are desirable. The olive leaf extract (OLE) is constituted by phenolic compounds, whose health beneficial effects were reported. Here, the anti-tumor effects of OLE were investigated in vitro on a panel of NB cell lines in terms of (i) reduction of cell viability; (ii) inhibition of cell proliferation through cell cycle arrest; (iii) induction of apoptosis; and (iv) inhibition of cell migration. Furthermore, cytotoxicity experiments, by combining OLE with the chemotherapeutic topotecan, were also performed. OLE reduced the cell viability of NB cells in a time- and dose-dependent manner in 2D and 3D models. NB cells exposed to OLE underwent inhibition of cell proliferation, which was characterized by an arrest of the cell cycle progression in G0/G1 phase and by the accumulation of cells in the sub-G0 phase, which is peculiar of apoptotic death. This was confirmed by a dose-dependent increase of Annexin V+ cells (peculiar of apoptosis) and upregulation of caspases 3 and 7 protein levels. Moreover, OLE inhibited the migration of NB cells. Finally, the anti-tumor efficacy of the chemotherapeutic topotecan, in terms of cell viability reduction, was greatly enhanced by its combination with OLE. In conclusion, OLE has anti-tumor activity against NB by inhibiting cell proliferation and migration and by inducing apoptosis.


Toxins ◽  
2021 ◽  
Vol 13 (11) ◽  
pp. 787
Author(s):  
Enrique García-Pérez ◽  
Dojin Ryu ◽  
Hwa-Young Kim ◽  
Hae Dun Kim ◽  
Hyun Jung Lee

Ochratoxin A (OTA) is a mycotoxin that is potentially carcinogenic to humans. Although its mechanism remains unclear, oxidative stress has been recognized as a plausible cause for the potent renal carcinogenicity observed in experimental animals. The effect of OTA on oxidative stress parameters in two cell lines of LLC-PK1 and HK-2 derived from the kidneys of pig and human, respectively, were investigated and compared. We found that the cytotoxicity of OTA on LLC-PK1 and HK-2 cells was dose- and time-dependent in both cell lines. Furthermore, increased intracellular reactive oxygen species (ROS) induced by OTA in both cell lines were observed in a time-dependent manner. Glutathione (GSH) was depleted by OTA at >48 h in HK-2 but not in LLC-PK1 cells. While the mRNA levels of glucose-6-phosphate dehydrogenase (G6PD) and glutathione peroxidase 1 (GPX1) in LLC-PK1 were down-regulated by 0.67- and 0.66-fold, respectively, those of catalase (CAT), glutathione reductase (GSR), and superoxide dismutase 1 (SOD) in HK-2 were up-regulated by 2.20-, 2.24-, and 2.75-fold, respectively, after 72 h exposure to OTA. Based on these results, we conclude that HK-2 cells are more sensitive to OTA-mediated toxicity than LLC-PK1, and OTA can cause a significant oxidative stress in HK-2 as indicated by changes in the parameter evaluated.


Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 5175-5175
Author(s):  
Juliana Pereira ◽  
Debora Levy ◽  
Jorge Luis Maria Ruiz ◽  
Felipe Vieira Rodrigues Maciel ◽  
Dalton de Alencar Fisher Chamone ◽  
...  

Abstract JBD57 is a nucleoside/nucleotide analogue that in human cells causes depletion of mitochondrial DNA by disrupting oxidative phosphorylation pathways leading to toxic accumulation of nonesterified fatty acids, dicarboxylic acids and free radicals. Human 26S proteasome is also a target for JBD57. Here we evaluated JBD57 citotoxicity in several human tumor cell lines in vitro. Human MM cell line RPMI 8226/S (CCL-155), human T-cell lymphoblastic-like (Jurkat) and human T-cell leukemia (1301) were grown in RPMI 1640 medium; uterine sarcoma (MES-S (CRL-1976) cells were grown in McCoy medium; HUV-EC-C (CRL-1730) cells were grown in 199/EBSS medium. Media were supplemented with 10 % FBS. Cells were incubated at 37°C in a water-jacketed incubator with 5 % CO2. To evaluate JBD57 citotoxicity in RPMI 8226/S, MES-S, Jurkat, 1301 and HUV-EC-C cells, 104cells/well were grown in flat-bottomed 96-well tissue culture plates for 24, 48 and 72 hr; JBD57 was added to the media in several concentrations (0μM, 32.25μM, 62.5μM, 125μM, 250μM and 500μM). At the end of the experimental periods, cell viability was determined by the MTT method. JBD57 inhibited the growth of MM cell line RPMI 8226/S in a dose- and time-dependent manner. Cell viability decreased progressively with increasing concentrations of JBD57 as well as with increasing time periods. The IC50 (inhibitory concentration at 50%) was 125 μM at 72 hr. The viability of the MM cells after 72 hr incubation with JBD57 500μM was 33%, whereas 100% viability was observed when no drug was added. On the other hand, JBD57 did not affect cell viability of any of the other studied cell lines (uterine sarcoma, Jurkat, 1301 and HUVEC-C). JBD57 promotes a significant human MM cell death in a dose and time dependent manner but do not affect neither normal cell HUV-EC-C nor the tumoral cells MES-S, Jurkat and 1301, at least in the studied conditions. These results suggest that the potent antitumoral activity of JBD57 observed against MM cells could be potentially useful in the treatment of multiple myeloma.


2020 ◽  
Author(s):  
Imen Kallel ◽  
Ahmed Bayoudh ◽  
Bochra Gargouri ◽  
Lamia Khannous ◽  
Asma Elaguel ◽  
...  

Abstract Background Salvia officinalis L. essential oil (SoEO) was mostly traditionally used to medicate various diseases as cancer. Then, the present work aims were: (1) to model the cytotoxicity effects of Salvia officinalis L. essential oil (SoEO) related to the human cancer cell lines kind (MCF-7 and HeLa) ; (2) to optimize the hydro-distillation extraction conditions of SoEO; and, (3) to determine the in vitro scavenging capacity of the free radicals DPPH•, NO•, ABTS+, and the ability to reduce Fe3+. Methods The cytotoxicity and anti-proliferative abilities were evaluated by measuring cell viability and then modeled. Two human cell lines: MCF-7 and HeLa were used. The optimization of SoEO extraction by hydro-distillation was carried out with Response Surface Methodology (RSM) using the Box–Behnken design Results The cytotoxicity activity against both tumor cell lines MCF-7 and HeLa was considerably important with IC50 = 3.125 and 8.920 µg/mL, respectively. All treated cell lines showed a significant reducing in cell viability in response to the increasing oil concentration. The relative behaviors of both cell lines under SoEO treatment were modeled. The obtained optimal extraction yield was Y = 1.85 g/100 g d.b. The main identified fractions were camphene (23.7%), α-thujone (19.62%), 1,8-cineole (10.6%), viridiflorol (5.9%), borneol (5.72%); β-thujone (5.4%); caryophyllene (3,83%). Also, SoEO was mostly able to scavenge DPPH• free radical, ABTS+ radical and hydrogen peroxide in an amount dependent manner (IC50 = 0.97, 0.279 and 0.05 mg/mL, respectively). Conclusion The present work provides a preliminary platform for further investigation of the possible mechanism of S. officinalis essential oils and their individual compounds in cytotoxic and antitumor activity.


2020 ◽  
Vol 19 (4) ◽  
pp. 691-698
Author(s):  
Lin I-Ju ◽  
Tian YongJie

Purpose: The purpose of this study was to evaluate the role of miR-624-5p in ovarian cancer.Methods: MiR-624-5p expression in ovarian cancer {OC) cell lines and normal cells (NCs) was evaluated and compared the differential miR-624-5p in OC A2780 cells and cisplatin-resistant OC cell line (A2780/DDP). CCK-8 was used to evaluate changes in cell viability of the A2780 and A2780/DDP cell lines as well as silenced miR-624-5p. Western Blot examined the Stat3 and phosphorylated Pi3k. The binding between PDGFRA and miR-624-5p was predicted on Targetscan and verified through Luciferase Reporter Assay. The role of PDGFRA in A2780/DDP by overexpressing PDGFRA was evaluated by RT-qPCR and CCK-8 assays. RT-qPCR assay also measured miR-624-5p expression responsive to different dosages of cisplatin and CCK8 examined viability levels correspondingly. In addition, the interplay of PDGFRA and miR-624-5p by combined downregulation of both miR-624-5pand PDGFRA were evaluated.Results: OC cells had higher miR-624-5p expression than NCs but lower compared to cisplatinresistant A2780/DDP cells. A2780/DDP cells had higher viability than OC cell line A2780. Stat3 and phosphorylated PI3K were activated in A2780/DDP cells. Silencing miR-624-5p led to lower viability inA2780/DDP cells. miR-624-5p expression dropped as the cisplatin concentration increased, resulting in decreasing viability respectively. Luciferase Reporter assay validated the binding of miR-624-5p and PDGFRA in A2780/DDP cells. Overexpressed PDGFRA induced lower cell viability in A2780/DDP cells. Downregulation of PDGFRA partially restored the lowered viability and inhibited Stat3 as well as phosphorylated Pi3k induced by miR-624-5p inhibitor.Conclusion: MiR-624-5p could add to the cellular resistance to cisplatin in OC in-vitro model, which indicated that it might help unveil the mystery of drug-resistance in clinical stage of ovarian cancer. Keywords: MiR-624-5p, resistance, cisplatin, PDGFRA/Stat3/PI3K, ovarian cancer


2017 ◽  
Vol 35 (15_suppl) ◽  
pp. 10553-10553
Author(s):  
Peter E. Zage ◽  
Divya Subramonian ◽  
Qianxing Mo ◽  
Shixia Huang

10553 Background: Neuroblastoma (NB) is the most common extracranial solid pediatric tumor, and children with high-risk NB have poor survival rates and need novel treatment strategies. Regorafenib, a multi-receptor tyrosine kinase (RTK) inhibitor approved for treating adult solid tumors such as advanced metastatic colorectal cancer and gastrointestinal stromal tumors, inhibits many RTKs, including PDGFR-β, VEGFR1-3, RET, c-Kit and FGFR family members. Based on the potential roles for these targets in neuroblastoma pathogenesis, we explored the therapeutic potential of Regorafenib alone and in combination with 13-cis-retinoic acid against neuroblastoma cells. Methods: We treated NB cell lines with increasing concentrations of Regorafenib and measured cell viability using MTT assays. We further measured the occupied percent confluence over time using continuous live cell imaging. We performed Western blots for caspase cleavage to measure apoptosis and flow cytometry to determine cell cycle expression. We performed Reverse Phase Protein Array (RPPA) analysis of neuroblastoma cells before and after treatment with regorafenib combined with 13- cis-retinoic acid. Results: IC50values for the tested cell lines ranged between 2.5mcM and 12.5mcM after 72 hours of exposure to Regorafenib, and decreased viability was due to a combination of apoptosis and cell cycle arrest. RPPA analysis identified alterations in multiple proteins and pathways after Regorafenib with retinoic acid treatment, including the PI3K/Akt/mTOR and Jak/Stat pathways. Phosphorylation of Erk1/2, S6, Akt, and c-Jun were decreased, while protein expression of GATA3 was increased in a dose-dependent manner. Conclusions: Regorafenib treatment results in reduced neuroblastoma cell viability and increased apoptosis via effects on several signaling pathways. Effects on intracellular signaling pathways associated with responses to the combination of regorafenib plus retinoic acid represent opportunities to develop novel combination therapies, representing potential new therapeutic strategies for children with neuroblastoma.


Blood ◽  
2007 ◽  
Vol 110 (11) ◽  
pp. 4797-4797
Author(s):  
Mariateresa Fulciniti ◽  
Pierfrancesco Tassone ◽  
Teru Hideshima ◽  
Kenneth C. Anderson ◽  
Nikhil C. Munshi

Abstract Multiple Myeloma (MM) is a malignant proliferation of plasma cells characterized by disruption of cell cycle checkpoint controls which maintain G2M transition and/or mitosis. CDC2 is the cyclin-dependent kinase that normally drives cells into mitosis and is universally expressed in MM. To examine the biologic role of CDC2 in MM, we evaluated cellular and molecular effects of Terameprocol (M4N, tetra-O-methyl nordihydroguaiaretic acid) that has been shown to inhibit cell cycle progression at the G2/M phase by inhibiting the transcription of sp-1 dependent expression of CDC2. We observed that Terameprocol downregulated the expression of cdc2 in a time-dependent manner, with a maximal effect at 24h. This was associated with induction of G2/M growth arrest in a panel of MM cell lines (INA6, OPM1, OPM2, MM1S, RPMI-8226, U266), as determined by PI staining. Interestingly, Terameprocol treatment led to increase in p21waf1 protein levels. Importantly, we observed inhibition of DNA synthesis by Terameprocol in a dose- and time-dependent manner, with IC50 range from 1–20 uM for a 24 hours period of treatment, as assessed by 3H-thymidine uptake. Longer exposure of MM cells to Terameprocol resulted in cytoxicity, as assessed by MTT assay, via induction of apoptosis, evidenced by Annexin V+ /PI staining, in all the MM cell lines tested. Terameprocol -induced apoptosis is predominantly associated with caspase-9 and caspase-3, but not caspase-8 activation, suggesting that Terameprocol triggers intrinsic apoptotic pathway in MM cells. Our results show that genes that control entry and progression of G2/M phase, especially cdc2, may be an attractive target for MM therapy and Terameprocol represents a prototypic agent for the control of unregulated cellular proliferation in MM.


Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. 1496-1496 ◽  
Author(s):  
Ilaria Iacobucci ◽  
Andrea Ghelli Luserna Di Rorà ◽  
Maria Vittoria Verga Falzacappa ◽  
Enrico Derenzini ◽  
Anna Ferrari ◽  
...  

Abstract Abstract 1496 Introduction: Although progress in the treatment of ALL has been remarkable in children, in adults ALL still carries a dismal outcome. Thus, there is a need to improve therapeutic options. In the last years, selective inhibitors of Chk1 and/or Chk2 have been discovered, developed and entered in clinical trials. However, so far, they have not yet been investigated in leukemia. Chk1 and Chk2 are serine/threonine kinases that play a critical role in response to DNA damage both by halting the cell cycle through checkpoint activation and by actively repairing DNA. Here, we explored the in vitro and in vivo activity of single-agent inhibition of Chk1/2 by PF-0477736 in B- and T-progenitor ALL and we investigated potential biomarkers of functional inhibition. Methods: Human B (BCR-ABL1-positive: BV-173, SUPB-15; BCR-ABL1- negative: NALM-6, NALM-19, REH) and T (MOLT-4, RPMI-8402, CEM) leukemia cell lines were incubated with increasing concentrations of drug (5–2000 nM) for 24, 48 and 72 hours (hrs). Results: Inhibition of Chk1/2 resulted in a dose and time-dependent cytotoxicity with RPMI-8402 and BV-173 cells being the most sensitive (IC50 at 24 hrs: 57 nM and 82 nM, respectively), while NALM-6 cells the most resistant (IC50 at 24 hrs: 1426 nM)(WST-1 assay, Roche). Sensitivity did not correlate with p53 status (BV-173, SUPB-15, NALM-6 and NALM-19 cells were p53 wild-type whereas REH, MOLT-4, RPMI-8402 and CEM cells were p53 mutated) and with baseline levels of Chk1/2 and ATR/ATM phosphorylation, indicative of intrinsic genetic stress. Consistent with the viability results, Annexin V/Propidium Iodide (PI) staining analysis showed a significant increase of apoptosis at 24 and 48 hrs in a dose and time dependent manner coupled to increased proteolytic cleavage of PARP-1. In all sensitive cell lines in addition to the induction of apoptosis, Chk1/Chk2 inhibition induced DNA damage as demonstrated by the increased number of γH2AX foci (western blot and immunofluorescence analysis) and by a marked phosphorylation of Chk1 (ser317 and ser345). Moreover, PF-0477736 efficiently triggered the Chk1-Cdc25-Cdk1 pathway as soon as 24 hrs of treatment with a decrease of the inhibitory phosphorylation of Cdc25c (ser216) and Cdk1 (tyr15), leading to the abrogation of cell cycle arrest as confirmed by PI staining analysis at 6 and 24 hrs. The efficacy of PF-0477736 was thereafter demonstrated in primary leukemic blasts separated from 14 ALL patients. Based on the viability results at 24 hrs, 3 groups of patients were identified: very good responders, 5/14, 36% (IC50: 100–500 nM); good responders, 6/14, 43% (IC50: 600–1000 nM); poor responders, 3/14, 21% (IC50 > 1000 nM). By contrast, PF-0477736 did not show efficacy in primary cultures of normal bone marrow mononuclear cells, demonstrating its specificity for leukemia cells. We extended the in vitro and ex-vivo studies by assessing the efficacy of Chk inhibition in mice transplanted with T-lymphoid leukemia, demonstrating that PF-0477736 increases the survival of treated mice compared with mice treated with vehicle (p = 0.0016). Finally, in order to elucidate the mechanisms of action of PF-0477736 and to determine biomarkers of response, gene expression profiling analysis (Affymetrix GeneChip Human Gene 1.0 ST) was performed on treated leukemia cells and their untreated counterparts (DMSO 0.1%) after 24 hrs of incubation with concentrations equal to the IC50. Treatment resulted in a differential expression (p < 0.05) of genes involved in chromatin assembly, nucleosome organization and DNA packaging (e.g. Histone H1-H2A, 2B family clusters), DNA damage (DDIT3, GADD34 and GADD45a) and apoptosis (e.g. CDKN1A, BAX, FAS, BTG1), confirming that PF-0477736 contributes to checkpoint replication abrogation, accumulation of DNA damage and subsequent apoptosis in leukemia cells. Interestingly, N-Myc and c-Myc expression strongly decreased after treatment, as also confirmed by western blot analysis, suggesting that a negative feedback loop may exist between Chk induction and Myc expression. Conclusions: Together, these results demonstrate the efficacy of PF-0477736 both in vitro and in vivo models of ALL, arguing in favor of its future clinical evaluation in leukemia. Supported by ELN, AIL, AIRC, Fondazione Del Monte di Bologna-Ravenna, PRIN2009, PIO program, Programma Ricerca Regione-Università 2007–2009. PF-0477736 provided by Pfizer. Disclosures: Baccarani: ARIAD, Novartis, Bristol Myers-Squibb, and Pfizer: Consultancy, Honoraria, Speakers Bureau. Martinelli:NOVARTIS: Consultancy, Honoraria, Speakers Bureau; BMS: Consultancy, Honoraria, Speakers Bureau; PFIZER: Consultancy; ARIAD: Consultancy.


2019 ◽  
Vol 28 (1) ◽  
pp. 126-133 ◽  
Author(s):  
Thatyanne Gradowski do Nascimento ◽  
Priscilla Santos Vieira ◽  
Sheron Campos Cogo ◽  
Marcela Ferreira Dias-Netipanyj ◽  
Nilton de França Junior ◽  
...  

Abstract The antitumor properties of ticks salivary gland extracts or recombinant proteins have been reported recently, but little is known about the antitumor properties of the secreted components of saliva. The goal of this study was to investigate the in vitro effect of the saliva of the hard tick Amblyomma sculptum on neuroblastoma cell lines. SK-N-SK, SH-SY5Y, Be(2)-M17, IMR-32, and CHLA-20 cells were susceptible to saliva, with 80% reduction in their viability compared to untreated controls, as demonstrated by the methylene blue assay. Further investigation using CHLA-20 revealed apoptosis, with approximately 30% of annexin-V positive cells, and G0/G1-phase accumulation (>60%) after treatment with saliva. Mitochondrial membrane potential (Δψm) was slightly, but significantly (p < 0.05), reduced and the actin cytoskeleton was disarranged, as indicated by fluorescent microscopy. The viability of human fibroblast (HFF-1 cells) used as a non-tumoral control decreased by approximately 40%. However, no alterations in cell cycle progression, morphology, and Δψm were observed in these cells. The present work provides new perspectives for the characterization of the molecules present in saliva and their antitumor properties.


Sign in / Sign up

Export Citation Format

Share Document