Characterization of Leukemic Stem Cells in a Newly Established Acute Myeloid Leukemia (AML) Cell Line 2006-5

Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 3987-3987
Author(s):  
Rui-kun Zhong ◽  
Thomas A. Lane ◽  
Edward D Ball

Abstract AML cell line 2006-5 was established by serial culture of an AML patients’ PBMC (M5). Compared to primary AML cells, this line expresses CD13, CD33, CD15, CD4, CD86, CD54 but lost CD34, CD64, CD123 and HLA-Dr. A group of CD13−/CD33− cells was detected consisting of 0.2% of total cells, but no significant CD34, CD90 or CD123 expression cells could be detected by FACS. After depleting of CD13+/CD33+ cells by magnetic beads, the CD13−/CD33− cells were enriched to 95%. Significant CD34+, CD90+ or CD123+ cells (0.2–0.5%) appeared in the CD13−/CD33− enriched fraction of AML cells. Leukemia colony forming (LCF) cell assay analyzed at day 14 demonstrated CD34+, CD90+ or CD123+ cells selected by magnetic beads formed typical compact large colonies of more than 1000 cells representing 40–60% of total colonies (Fig left panel). The CD13−/CD33− enriched fraction formed medium colonies with a dense center surrounded by a halo of migrating cells (80–90% of total colonies) (Fig right). Untreated 2006-5 cells formed small diffuse colonies (70–80%). Re-plating of compact colonies selected from CD34+, CD90+ or CD123+ cell LCF assays formed the above 3 type of colonies in one culture dish. Although a daughter line can be generated from a single colony formed by CD13-CD33− cells, no compact colonies could be observed in re-plating experiment. After 14 days of culture, immature erythroid cell clusters were observed in the area surrounding compact colonies suggesting that the progenitors of the colony forming leukemia cells were at the GEMM stage. Small colonies of untreated cells gradually became apoptotic and necrotic after 10 days. These results support the theory that AML is organized as a hierarchy similar to the normal hematopoietic system. CD34+, CD90+ or CD123+ cells with very low frequency of 1–2 in 1×105 2006-5 line cells demonstrated high proliferation and differentiation potential, and may represent leukemia stem cells. CD13−/CD33− cells with lower proliferation rate may belong to more differentiated leukemia progenitors without self renew potential. If additional experiments support the notion that cells forming compact colonies are leukemia stem cells, they may serve as a useful resource to test the biology of leukemia and its therapy. Figure Figure Figure Figure

2012 ◽  
Vol 209 (5) ◽  
pp. 895-901 ◽  
Author(s):  
Olivier Herault ◽  
Kristin J. Hope ◽  
Eric Deneault ◽  
Nadine Mayotte ◽  
Jalila Chagraoui ◽  
...  

The determinants of normal and leukemic stem cell self-renewal remain poorly characterized. We report that expression of the reactive oxygen species (ROS) scavenger glutathione peroxidase 3 (GPx3) positively correlates with the frequency of leukemia stem cells (LSCs) in Hoxa9+Meis1-induced leukemias. Compared with a leukemia with a low frequency of LSCs, a leukemia with a high frequency of LSCs showed hypomethylation of the Gpx3 promoter region, and expressed high levels of Gpx3 and low levels of ROS. LSCs and normal hematopoietic stem cells (HSCs) engineered to express Gpx3 short hairpin RNA (shRNA) were much less competitive in vivo than control cells. However, progenitor cell proliferation and differentiation was not affected by Gpx3 shRNA. Consistent with this, HSCs overexpressing Gpx3 were significantly more competitive than control cells in long-term repopulation experiments, and overexpression of the self-renewal genes Prdm16 or Hoxb4 boosted Gpx3 expression. In human primary acute myeloid leukemia samples, GPX3 expression level directly correlated with adverse prognostic outcome, revealing a potential novel target for the eradication of LSCs.


2010 ◽  
Vol 22 (1) ◽  
pp. 349 ◽  
Author(s):  
A. Lange Consiglio ◽  
B. Corradetti ◽  
D. Bizzaro ◽  
M. Cassano ◽  
F. Cremonesi

According to the developmental stage from which they are obtained, stem cells are classified as being embryonic, fetal, or adult. Embryonic stem cells have unlimited self-renewing capacity and multilineage differentiation potential, but the separation of these cells requires destruction of the embryo. Moreover, their clinical application seems to be hindered by the high tumorigenic rate after transplantation. Stem cells derived from adult tissues are considered to be more limited in their potential; although, they are currently the more versatile cells in the clinical field. However, the risk of the immunological rejection of the transplanted stem cells by the recipient is an important limiting factor. In human medicine, stem cells isolated from term placenta are the ideal candidates for disease treatment, specifically because of their plasticity and reduced immunogenicity. The aim of this work was to provide, for the first time, an isolation protocol and the characteristics of the stem cells from horse amniotic membrane, which hold potential uses in equine clinical regenerative medicine. Minimal criteria for stemness definition are adherence to plastic culture dish, formation of fibroblast colony forming units (CFU-F), specific pattern of surface antigen expression, and differentiation potential toward one or more lineages. The amnion is a thin, avascular membrane composed of an epithelial layer and an outer layer of connective tissue. From 3 samples of allantoamnion retrieved at delivery, each amniotic membrane was stripped from the overlying allantois and, for isolation of the epithelial cells, digested with trypsin. After removal of epithelial cells, the AMSC population was obtained by digestion with collagenase and DNase. The cellular yield from term amnion was 10-fold more epithelial cells than AMSC. Isolated cells readily attached to plastic culture dishes. Culture was established in DMEM-HG medium, supplemented with 10% serum and EGF, where the cells proliferated robustly. Epithelial cells displayed typical cuboidal morphology, whereas AMSC were fibroblast-like. Normally, 5 to 6 passages were achieved before proliferation decreased, with a mean of 13.08 and 26.5 cell population doublings after 31 days, respectively, for epithelial cells and AMSC. The mean frequency of CFU-F was, respectively, 1 : 283 and 1:111 for epithelial cells and AMSC. The 2 cellular lines expressed MSC mRNA markers (CD29, CD105, CD44) and were negative for CD34, which was expressed at the fifth passage in both cellular types. Osteogenic differentiation of epithelial stem cells and AMSC was confirmed by von Kossa stain and by an increased expression of osteocalcin and osteopontin. Our preliminary data showed that equine amnion holds apparent potential as a source of presumptive stem cells, which might have widespread clinical applications, but aspects including immunohistochemical study, preclinical experimentation, and immunological properties must be studied.


Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. 5081-5081
Author(s):  
Ching-Tien Peng

Abstract 5081 Introduction Idiopathic severe aplastic anemia (SAA), characterized by failure of hematopoiesis, is rare and potentially life-threatening to children. However, the pathogenesis has not been completely understood, and insufficiency in the hematopoietic microenvironment can be an important factor. Mesenchymal stem cells (MSCs) play an important role in maintaining bone marrow microenvironment. Therefore, we aimed at the intrinsic defects of bone marrow MSCs derived from SAA children. Materials and Methods Bone marrow MSCs were obtained from 5 SAA children and 5 controls. The morphology, immunophenotyping, proliferative capacity and differentiation potential of MSCs from SAA children were determined and compared with those of MSCs from controls. Results In vitro, MSCs of SAA and control group shared a similar spindle-shaped morphology. Both revealed a consistent immunophenotypic profile which was negative for CD45, CD14 and CD34, and positive for CD105, CD73, and CD44. However, SAA MSCs had slower expansion rate and smaller cumulative population doubling from passage 4 to 6 (1.83± 1.21 vs 3.36± 0.87; p = 0.046), indicating lower proliferative capacity. Besides, only 3 of 5 cultures of SAA group retained the ability to continue expansion till 80%-90% confluent cell layer beyond passage 6, suggesting earlier senescence of SAA MSCs. After osteogenic induction, SAA MSCs showed lower alkaline phosphatase activity (1.46± 0.04 vs 2.27± 0.32; p = 0.013), less intense von Kossa staining and lower gene expression of core binding factora1 (0.0015± 0.0005 vs 0.0056± 0.0017; p = 0.013). Following adipogenic induction, SAA MSCs showed less intense Oil red O staining (0.86± 0.22 vs 1.73± 0.42; p = 0.013) and lower lipoproteinlipase expression (0.0105± 0.0074 vs 0.0527± 0.0254; p = 0.013).The results of real time-PCR analysis for the assessment of lineage-specific genes were consistent with the findings of histochemical stains, and both indicated that SAA MSCs had poor osteogenic and adipogenic potential. Conclusions In this study, we demonstrated that bone marrow MSCs from children with SAA had poor potential of proliferation and differentiation. These alterations in MSCs may contribute to the failure of hematopoiesis, and lead to the development of the disease. Further studies are needed to elucidate the relationship between MSCs and SAA. Disclosures No relevant conflicts of interest to declare.


2013 ◽  
Vol 305 (9) ◽  
pp. H1354-H1362 ◽  
Author(s):  
Koichi Igura ◽  
Motoi Okada ◽  
Ha Won Kim ◽  
Muhammad Ashraf

Stem cell-mediated cardiac regeneration is impaired with age. In this study, we identified a novel subpopulation of small juvenile stem cells (SJSCs) isolated from aged bone marrow-derived stem cells (BMSCs) with high proliferation and differentiation potential. SJSCs expressed mesenchymal stem cell markers, CD29+/CD44+/CD59+/CD90+, but were negative for CD45−/CD117− as examined by flow cytometry analysis. SJSCs showed higher proliferation, colony formation, and differentiation abilities compared with BMSCs. We also observed that SJSCs significantly expressed cardiac lineage markers (Gata-4 and myocyte-specific enhancer factor 2C) and pluripotency markers (octamer-binding transcription factor 4, sex-determining region Y box 2, stage-specific embryonic antigen 1, and Nanog) as well as antiaging factors such as telomerase reverse transcriptase and sirtuin 1. Interestingly, SJSCs either from young or aged animals showed significantly longer telomere length as well as lower senescence-associated β-galactosidase expression, suggesting that SJSCs possess antiaging properties, whereas aged BMSCs have limited potential for proliferation and differentiation. Furthermore, transplantation of aged SJSCs into the infarcted rat heart significantly reduced the infarction size and improved left ventricular function, whereas transplantation of aged BMSCs was less effective. Moreover, neovascularization as well as cardiomyogenic differentiation in the peri-infarcted area were significantly increased in the SJSC-transplanted group compared with the BMSC-transplated group, as evaluated by immunohistochemical analysis. Taken together, these findings demonstrate that SJSCs possess characteristics of antiaging, pluripotency, and high proliferation and differentiation rates, and, therefore, these cells offer great therapeutic potential for repair of the injured myocardium.


2015 ◽  
Author(s):  
Krzysztof Marycz ◽  
Daniel Lewandowski ◽  
Krzysztof A Tomaszewski ◽  
Brandon Michael Henry ◽  
Edward B Golec ◽  
...  

The aim of this study was to evaluate if low-frequency, low-magnitude vibrations (LFLM) could enhance chondrogenic differentiation potential of human adipose derived mesenchymal stem cells (hASCs) with simultaneous inhibition of their adipogenic properties for biomedical purposes. We developed a prototype device that induces low-magnitude (0.3 g) low-frequency vibrations with the following frequencies: 25, 35 and 45 Hz. Afterwards, we used human adipose derived mesenchymal stem cell (hASCS), to investigate their cellular response to the mechanical signals. We have also evaluated hASCs morphological and proliferative activity changes in response to each frequency. Induction of chondrogenesis in hASCs, under the influence of a 35 Hz signal leads to most effective and stable cartilaginous tissue formation through highest secretion of Bone Morphogenetic Protein 2 (BMP-2), and Collagen type II, with low concentration of Collagen type I. These results correlated well with appropriate gene expression level. Simultaneously, we observed significant up-regulation of α3, α4, β1 and β3 integrins in chondroblast progenitor cells treated with 35Hz vibrations, as well as Sox-9. Interestingly, we noticed that application of 35 Hz frequencies significantly inhibited adipogenesis of hASCs. The obtained results suggest that application of LFLM vibrations together with stem cell therapy might be a promising tool in cartilage regeneration.


Sign in / Sign up

Export Citation Format

Share Document