The Toll-Like Receptor-Like Molecule CD180 and Soluble CD14 Transmit Survival Signals in B-Cell Chronic Lymphocytic Leukemia Cells Presumably by Acting As Co-Receptors,

Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 3883-3883
Author(s):  
Martina Seiffert ◽  
Angela Schulz ◽  
Stephan Stilgenbauer ◽  
Peter Lichter

Abstract Abstract 3883 Survival and proliferation of B-cell chronic lymphocytic leukemia (CLL) cells strongly depend on external factors. When removed from their natural microenvironment CLL cells rapidly undergo spontaneous apoptosis in vitro unless cocultured with stromal cells or non-malignant leukocytes. Recently, we could show that monocytes effectively support long-term survival of CLL cells in vitro. Our results from cytokine antibody arrays and extensive transcriptome analyses of primary CLL cell cocultures suggested a functional role of several soluble factors as well as signaling pathways of innate immunity, like Toll-like receptor-, TREM1- and NRF2-mediated signaling. The most interesting soluble factors are currently quantified in serum samples of the german CLL8 study cohort of CLL patients by cytometric bead arrays. So far, our data show that two of these candidates, CCL2 and soluble CD14, are significantly increased in the serum of CLL patients. In vitro studies using recombinant soluble CD14 demonstrated that CLL cell survival was significantly increased in the presence of this factor. CD14 which is expressed in particular by monocytes and macrophages is an important mediator of innate immunity. Along with TLR-4, CD14 acts as a co-receptor for the detection of bacterial lipopolysaccharide (LPS). Alternatively, LPS can also bind to the toll-like receptor-like molecule CD180, which shows strong homology to TLR-4, but does not harbor an intracellular signaling domain. Since TLR-4 is not expressed in CLL cells, we investigated the potential role of CD180 in CD14-mediated cell survival. Flow cytometry analysis revealed an upregulation of CD180 surface expression in CLL cells under survival-inducing culture conditions. Stimulation of CD180 with a cross-linking antibody resulted in activation of CLL cells measured by increased cell size and upregulation of the activation marker CD86, and significantly increased survival rates of CLL cells. Both CD14- and CD180-mediated survival signals lead to an increase in NF-κB activity and up-regulation of its target gene BCL-2. Depletion of CD180 surface expression in CLL cells abolished the pro-survival effect of soluble CD14, suggesting that this factor mediates its signals via binding to CD180. In summary, our data demonstrate that both, soluble CD14 and the toll-like receptor-like molecule CD180 transmit pro-survival signals in CLL cells, most likely by acting as co-receptors. Currently, we characterize the intracellular signaling machinery which is involved in these processes. Disclosures: No relevant conflicts of interest to declare.

Blood ◽  
2016 ◽  
Vol 128 (22) ◽  
pp. 3239-3239 ◽  
Author(s):  
Emilia Bialopiotrowicz ◽  
Patryk Gorniak ◽  
Bartosz Pula ◽  
Monika Noyszewska-Kania ◽  
Hanna Makuch-Lasica ◽  
...  

Abstract Lymph node microenvironment provides chronic lymphocytic leukemia (CLL) cells with pro-survival and protective signals, fostering resistance to conventional chemotherapeutics. CLL cells overexpress oncogenic PIM kinases, which modulate proteins engaged in transcription, translation, apoptosis, cell cycle and adhesion/motility (Mol Cancer Ther 2014, 13: 1231-45). Herein, we searched for the link between tumor microenvironment and PIMs expression, compared the clinical characteristics of CLL patients with high versus low expression of PIM kinases, and investigated the consequences of their inhibition with newly developed pan-PIM inhibitor, SEL24-B489 in primary CLL cells. We first evaluated the expression of PIM kinases in CD19+ cells derived from 88 newly diagnosed CLL cases. Patients with unmutated IGHV status exhibited significantly higher PIM1 transcript levels than patients with mutated IGHV genes. Subjects with advanced CLL (Binet C) exhibited higher PIM2 expression than patients in Binet A/B stage. Significantly higher PIM2 transcript abundance at the time of diagnosis was also observed in patients who relapsed after first line treatment (p=0.005). Expression of PIM2 and PIM3 kinases in lymph nodes was significantly higher than in peripheral blood, suggesting a relationship between PIM kinase expression/activity and CLL cell microenvironment. To further explore the role of microenvironment in the control of PIM expression, peripheral blood CLL cells were incubated with anti-IgM or CD40 ligand. Both stimuli induced PIM1 and PIM3 expression. Co-culture of CLL cells with stromal cell (HS5) monolayers promoted the expression of PIM3 isoform. We next assessed the consequences of PIM inhibition in CLL cells using novel pan-PIM inhibitor, SEL24-B489. Incubation with SEL24-B489 decreased phosphorylation of PIM substrates, p-FOXO1/3a(T24/T32) and p-4EBP1(S65), and induced dose-dependent apoptosis in 27 out of 28 analyzed cases, regardless of the IGHV mutation status and including relapsed patients. Of note, SEL24-B489 induced higher apoptotic response in primary CLL cells than referential pan-PIM inhibitor AZD1208. CLL cells with 17p13 deletion and obtained from chemo-refractory patients were also vulnerable to SEL24-B489, suggesting that functional p53 is not required for execution of SEL24-B489-mediated apoptosis. Importantly, SEL24-B489 was not toxic for cells derived from healthy donors. Since microenvironmental cues increase expression of PIM kinases, we hypothesized that interactions with stromal cells might hinder the in vitro activity of the PIM inhibitor. To explore this possibility, we compared apoptotic response to SEL24-B489 in CLL cells co-cultured on HS5 monolayers and CLL cells grown without the stromal support. In 6 out of 7 tested cases, SEL24-B489 overrode the protective signals from HS5 cells and induced apoptosis, although the cytotoxic effect of PIM inhibitor was stronger in the absence of stromal cells. PIM1 was shown to regulate CLL cells migration through CXCR4(S339) phosphorylation (Mol Cancer Ther 2014, 13: 1231-45). Accordingly, SEL24-B489 decreased phospho-CXCR4(S339), CXCR4 surface expression, and impaired CLL cells migration in the CXCL12 gradient. Surprisingly, decrease in the CXCR4 surface expression after SEL24-B489 was relatively modest when compared to the effect of this inhibitor on CXCL12-directed migration. We found that incubation of CLL cells with CXCL12 led to increase in the phosphorylation of mTOR(S2448) and Akt(S473). SEL24-B489 reduced the levels of p-mTOR(S2448), p-Akt(S473), p-4EBP1(T37/T46) and p-TSC2(S1798), revealing inhibitory effect on mTOR pathway. Pre-incubation of CLL cells with an mTOR inhibitor similarly restrained CXCL12-mediated mTOR activity and led to impaired CLL cells migration, uncovering the key role of mTOR axis in CXCR4-dependent migration. Thus, SEL24-B489 impairs the CLL cell migration by inhibiting CXCR4 surface expression and the CXCR4-triggered mTOR pathway. Taken together, we show that microenvironment signals increase expression of PIM kinases, supporting CLL cell survival and migration. Inhibition of PIM kinases impairs CXCR4-dependent migration and leads to CLL cells death, regardless of the p53 status. Targeting PIM kinases in CLL patients will likely release the cells from microenvironmental niches and might be a rational therapeutic strategy. Disclosures Warzocha: Novartis: Consultancy, Honoraria; BMS: Consultancy, Honoraria. Czardybon:Selvita S.A.: Employment. Galezowski:Selvita S.A.: Employment. Windak:Selvita S.A.: Employment. Brzozka:Selvita S.A.: Employment. Juszczynski:Selvita S.A.: Consultancy, Membership on an entity's Board of Directors or advisory committees.


Author(s):  
Gleb Nikolaevich Zyuz’kov ◽  
Larisa Arkad`evna Miroshnichenko ◽  
Elena Vladislavovna Simanina ◽  
Larisa Alexandrovna Stavrova ◽  
Tatyana Yur`evna Polykova

Abstract Objectives The development of approaches to the treatment of neurodegenerative diseases caused by alcohol abuse by targeted pharmacological regulation of intracellular signaling transduction of progenitor cells of nerve tissue is promising. We studied peculiarities of participation of NF-кB-, сАМР/РКА-, JAKs/STAT3-, ERK1/2-, p38-pathways in the regulation of neural stem cells (NSC) and neuronal-committed progenitors (NCP) in the simulation of ethanol-induced neurodegeneration in vitro and in vivo. Methods In vitro, the role of signaling molecules (NF-кB, сАМР, РКА, JAKs, STAT3, ERK1/2, p38) in realizing the growth potential of neural stem cells (NSC) and neuronal-committed progenitors (NCP) in ethanol-induced neurodegeneration modeled in vitro and in vivo was studied. To do this, the method of the pharmacological blockade with the use of selective inhibitors of individual signaling molecules was used. Results Several of fundamental differences in the role of certain intracellular signaling molecules (SM) in proliferation and specialization of NSC and NCP have been revealed. It has been shown that the effect of ethanol on progenitors is accompanied by the formation of a qualitatively new pattern of signaling pathways. Data have been obtained on the possibility of stimulation of nerve tissue regeneration in ethanol-induced neurodegeneration by NF-кB and STAT3 inhibitors. It has been found that the blockage of these SM stimulates NSC and NCP in conditions of ethanol intoxication and does not have a «negative» effect on the realization of the growth potential of intact progenitors (which will appear de novo during therapy). Conclusions The results may serve as a basis for the development of fundamentally new drugs to the treatment of alcoholic encephalopathy and other diseases of the central nervous system associated with alcohol abuse.


2021 ◽  
Vol 22 (9) ◽  
pp. 4370
Author(s):  
Cássia de Fáveri ◽  
Paula M. Poeta Fermino ◽  
Anna P. Piovezan ◽  
Lia K. Volpato

The pathogenesis of endometriosis is still controversial, although it is known that the inflammatory immune response plays a critical role in this process. The resolution of inflammation is an active process where the activation of endogenous factors allows the host tissue to maintain homeostasis. The mechanisms by which pro-resolving mediators (PRM) act in endometriosis are still little explored. Thus, this integrative review aims to synthesize the available content regarding the role of PRM in endometriosis. Experimental and in vitro studies with Lipoxin A4 demonstrate a potential inhibitory effect on endometrial lesions’ progression, attenuating pro-inflammatory and angiogenic signals, inhibiting proliferative and invasive action suppressing intracellular signaling induced by cytokines and estradiol, mainly through the FPR2/ALX. Investigations with Resolvin D1 demonstrated the inhibition of endometrial lesions and decreased pro-inflammatory factors. Annexin A1 is expressed in the endometrium and is specifically present in women with endometriosis, although the available studies are still inconsistent. Thus, we believe there is a gap in knowledge regarding the PRM pathways in patients with endometriosis. It is important to note that these substances’ therapeutic potential is evident since the immune and abnormal inflammatory responses play an essential role in endometriosis development and progression.


2017 ◽  
Vol 10 ◽  
pp. 117906601773156 ◽  
Author(s):  
Mohammad Althubiti

Spleen tyrosine kinase (SYK) is a cytoplasmic enzyme that promotes survival and proliferation of B cells. SYK inhibition has shown promising results in the treatment of arthritis and chronic lymphocytic leukemia (CLL). However, in other context, it has been shown that SYK overexpression in epithelial cancer cells induced senescence in p53-dependent mechanism, which underscored its antineoplastic activity in vitro. Here, we show that SYK was induced in response of DNA damage in parallel with p53 levels. In addition, using chemical inhibitors of SYK reduced p53 levels in HCT116 and HT1080 cell lines, which underlines the role of SYK inhibition on p53 activity. Furthermore, SYK inhibition modulated the cell growth, which resulted in a decreasing in cell death. Interestingly, SYK expression showed a positive prognosis in patients with solid tumors in correlations with their survival rates, as expected negative correlation was seen between SYK expression and survival rate of patients with CLL. In conclusion, these findings demonstrate that SYK inhibition modulates p53 expression and activity in HCT116 and HT1080 cells. Reconsidering using of SYK inhibitors in clinical setting in the future should be evaluated carefully in accordance with these findings to prevent the formation of secondary malignancies.


2013 ◽  
Vol 57 (5) ◽  
pp. 77S
Author(s):  
Ali Navi ◽  
Rebekah Yu ◽  
Xu Shi-Wen ◽  
Sidney Shaw ◽  
George Hamilton ◽  
...  

2014 ◽  
Vol 60 (3) ◽  
pp. 322-331 ◽  
Author(s):  
E.A. Avilova ◽  
O.E. Andreeva ◽  
V.A. Shatskaya ◽  
M.A. Krasilnikov

The main goal of this work was to study the intracellular signaling pathways responsible for the development of hormone resistance and maintaining the autonomous growth of breast cancer cells. In particular, the role of PAK1 (p21-activated kinase 1), the key mitogenic signaling protein, in the development of cell resistance to estrogens was analyzed. In vitro studies were performed on cultured breast cancer cell lines: estrogen-dependent estrogen receptor (ER)-positive MCF-7 cells and estrogen-resistant ER-negative HBL-100 cells. We found that the resistant HBL-100 cells were characterized by a higher level of PAK1 and demonstrated PAK1 involvement in the maintaining of estrogen-independent cell growth. We have also shown PAK1 ability to up-regulate Snail1, one of the epithelial-mesenchymal transition proteins, and obtained experimental evidence for Snail1 importance in the regulation of cell proliferation. In general, the results obtained in this study demonstrate involvement of PAK1 and Snail1 in the formation of estrogen-independent phenotype of breast cancer cells showing the potential role of both proteins as markers of hormone resistance of breast tumors.


Blood ◽  
1988 ◽  
Vol 71 (4) ◽  
pp. 1012-1020 ◽  
Author(s):  
JS Moore ◽  
MB Prystowsky ◽  
RG Hoover ◽  
EC Besa ◽  
PC Nowell

The consistent occurrence of T cell abnormalities in patients with B cell chronic lymphocytic leukemia (B-CLL) suggest that the non- neoplastic host T cells may be involved in the pathogenesis of this B cell neoplasm. Because potential defects of immunoglobulin regulation are evident in B-CLL patients, we investigated one aspect of this by studying the T cell-mediated immunoglobulin isotype-specific immunoregulatory circuit in B-CLL. The existence of class-specific immunoglobulin regulatory mechanisms mediated by Fc receptor-bearing T cells (FcR + T) through soluble immunoglobulin binding factors (IgBFs) has been well established in many experimental systems. IgBFs can both suppress and enhance B cell activity in an isotype-specific manner. We investigated the apparently abnormal IgA regulation in a B-CLL patient (CLL249) whose B cells secrete primarily IgA in vitro. Enumeration of FcR + T cells showed a disproportionate increase in IgA FcR + T cells in the peripheral blood of this patient. Our studies showed that the neoplastic B cells were not intrinsically unresponsive to the suppressing component of IgABF produced from normal T cells, but rather the IgABF produced by the CLL249 host T cells was defective. CLL249 IgABF was unable to suppress IgA secretion by host or normal B cells and enhanced the in vitro proliferation of the host B cells. Size fractionation of both normal and CLL249 IgABF by gel-filtration high- performance liquid chromatography (HPLC) demonstrated differences in the ultraviolet-absorbing components of IgABF obtained from normal T cells v that from our patient with defective IgA regulation. Such T cell dysfunction may not be restricted to IgA regulation, since we have found similar expansion of isotype-specific FcR + T cells associated with expansion of the corresponding B cell clone in other patients with B-CLL. These data suggest that this T cell-mediated regulatory circuit could be significantly involved in the pathogenesis of B-CLL.


Development ◽  
1998 ◽  
Vol 125 (6) ◽  
pp. 1017-1024 ◽  
Author(s):  
F. Miralles ◽  
P. Czernichow ◽  
R. Scharfmann

In this study, we have investigated the role of the embryonic mesenchyme in the development of the pancreas. We have compared the development in vitro of E12.5 rat pancreatic rudiments grown in the presence or absence of mesenchyme. When the E12.5 pancreatic epithelial rudiment is cultured in the presence of its surrounding mesenchyme, both morphogenesis and cytodifferentiation of the exocrine component of the pancreas are completely achieved, while only a few immature endocrine cells develop. The pancreatic rudiments grown in the absence of mesenchyme develop in a completely different way; the exocrine tissue develops poorly and fails to undergo acinar morphogenesis, while the endocrine tissue develops actively. Four times more insulin-positive cells develop after removal of the mesenchyme than in the cultures performed in the presence of mesenchyme. Moreover, the insulin-expressing cells developed in the mesenchyme-depleted rudiments appear mature since they do not coexpress glucagon, express the glucose transporter Glut-2 and express Rab3A, a molecule associated with the secretory granules. Moreover, these endocrine cells are able to associate and form true islets. Both the inductive effect of the mesenchyme on the proper development of the exocrine tissue and its repressive effect on the development of the endocrine cells are mediated by soluble factors. Follistatin, which is expressed by E12.5 pancreatic mesenchyme, can mimic both inductive and repressive effects of the mesenchyme. Follistatin could thus represent one of the mesenchymal factors required for the development of the exocrine tissue while exerting a repressive role on the differentiation of the endocrine cells.


Development ◽  
1996 ◽  
Vol 122 (4) ◽  
pp. 1235-1242 ◽  
Author(s):  
U. Koshimizu ◽  
T. Taga ◽  
M. Watanabe ◽  
M. Saito ◽  
Y. Shirayoshi ◽  
...  

Leukemia inhibitory factor (LIF) is a cytokine known to influence proliferation and/or survival of mouse primordial germ cells (PGC) in culture. The receptor complex for LIF comprises LIF-binding subunit and non-binding signal transducer, gp130. The gp130 was originally identified as a signal-transducing subunit of interleukin (IL)-6 and later also found to be a functional component of receptor complexes for other LIF-related cytokines (oncostatin M [OSM], ciliary neurotrophic factor [CNTF] and IL-11). In this study, we have analyzed the functional role of gp130-mediated signaling in PGC growth in vitro. OSM was able to fully substitute for LIF; both cytokines promoted the proliferation of migratory PGC (mPGC) and enhanced the viability of postmigratory (colonizing) PGC (cPGC) when cultured on SI/SI4-m220 cells. Interestingly, IL-11 stimulated mPGC growth comparable to LIF and OSM, but did not affect cPGC survival. IL-6 and CNTF did not affect PGC. In addition, a combination of IL-6 and soluble IL-6 binding subunit (sIL-6R), which is known to activate intracellular signaling via gp130, fully reproduced the LIF action of PGC. Both in the presence and absence of LIF, addition of neutralizing antibody against gp130 in culture remarkably blocked cPGC survival. These results suggest a pivotal role of gp130 in PGC development, especially that it is indispensable for cPGC survival as comparable to the c-KIT-mediated action. We have further demonstrated that a combination of LIF with forskolin or retinoic acid, a potent mitogen for PGC, supported the proliferation of PGC, leading to propagation of the embryonic stem cell-like cells, termed embryonic germ (EG) cells. Since EG cells were also obtained by using OSM or the IL-6/sIL-6R complex in place of LIF, a significant contribution of gp130-mediated signaling in EG cell formation was further suggested.


2013 ◽  
Vol 33 (suppl_1) ◽  
Author(s):  
Chanwoo Kim ◽  
Hannah Song ◽  
Sandeep Kumar ◽  
Douglas Nam ◽  
Hyuk Sang Kwon ◽  
...  

Atherosclerosis is a multifactorial disease that arises from a combination of endothelial dysfunction and inflammation, occurring preferentially in arterial regions exposed to disturbed flow. Bone morphogenic protein-4 (BMP4) produced by disturbed flow induces inflammation, endothelial dysfunction and hypertension, suggesting the importance of BMPs in vascular biology and disease. BMPs bind to two different types of BMP receptors (BMPRI and II) to instigate intracellular signaling. Increasing evidences suggest a correlative role of BMP4 and atherosclerosis, but the role of BMP receptors especially BMPRII in atherosclerosis is still unclear and whether knockdown of BMPRII is the cause or the consequence of atherosclerosis is still not known. It is therefore, imperative to investigate the mechanisms by which BMPRII expression is modulated and its ramifications in atherosclerosis. Initially, we expected that knockdown of BMPRII will result in loss of pro-atherogenic BMP4 signaling and will thereby prevent atherosclerosis. Contrarily, we found that loss of BMPRII expression causes endothelial inflammation and atherosclerosis. Using BMPRII siRNA and BMPRII +/- mice, we found that BMPRII knockdown induces endothelial inflammation in a BMP-independent manner via mechanisms involving reactive oxygen species (ROS), NFκB, and NADPH oxidases. Further, BMPRII +/- ApoE -/- mice develop accelerated atherosclerosis compared to BMPRII +/+ ApoE -/- mice, suggesting loss of BMPRII may induce atherosclerosis. Interestingly, we found that multiple pro-atherogenic stimuli such as hypercholesterolemia, disturbed flow, pro-hypertensive angiotensin II, and pro-inflammatory cytokine, TNFα, downregulate BMPRII expression in endothelium, while anti-atherogenic stimuli such as stable flow and statin treatment upregulate its expression, both in vivo and in vitro . Moreover, we found that BMPRII expression is significantly diminished in human coronary advanced atherosclerotic lesions. These results suggest that BMPRII is a critical, anti-inflammatory and anti-atherogenic protein that is commonly targeted by multiple pro- and anti-atherogenic factors. BMPRII could be used as a novel diagnostic and therapeutic target in atherosclerosis.


Sign in / Sign up

Export Citation Format

Share Document