Platelet Microparticle Production Is Regulated By STIM1 Dependent Entry Of Extracellular Ca2+ Through Orai1

Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 1059-1059
Author(s):  
Matthew T Duvernay ◽  
Heidi Hamm

Abstract Microparticles are submicron lipid vesicles packed with protein and nucleic acid. They are found in abundance circulating in the vasculature and can be generated from a number of cell types including endothelial cells, leukocytes, and platelets. The microparticles generated from platelets far out number those generated from other cell types and their incidence is correlated with a myriad of cardiovascular diseases. We recently demonstrated that stimulation of gel filtered human platelets through Protease activated receptor (PAR) 4 leads to the generation of 4-5 times more platelet microparticles (PMP) than PAR1 stimulation. Platelet microparticle (PMP) production was demonstrated to be downstream of a Rho kinase-dependent signaling pathway. Consistently, more myosinIIa phosphorylation was observed downstream of PAR4 stimulation. PMP generation was quantified by flow cytometry using polystyrene microbeads of standardized size for appropriate size gating, and CD41a (aIIb) and CD62p (P-selectin) staining for positive identification of platelet derived membranes. Submicron particles positive for both CD41a and CD62p were classified as true PMP. Recently, we have expanded these observations to platelet stimulation with thrombin, convulxin (a GPVI collagen receptor agonist), and dual PAR/collagen receptor stimulation. Thrombin and PAR4-activating peptide (AP) stimulation leads to equivalent levels of PMP production, confirming that PAR4 is the major thrombin receptor responsible for PMP generation, with PAR1 playing only a minor role. Collagen receptor stimulation with convulxin lead to a comparable level of PMP generation as thrombin stimulation. However, co-stimulation with convulxin and thrombin or convulxin and PAR1-AP or PAR4-AP lead to PMP production exceeding the sum of PMP by convulxin and PAR agonist alone by as much as 350%, suggesting a synergistic response. It is well documented that PMP generation does not occur in the absence of extracellular Ca2+. Recently published data collected with Orai1 knockout mice indicate that the majority of extracellular Ca2+ entry into the platelet is mediated by the plasma membrane Ca2+ channel Orai1. STIM1 is an ER calcium sensor that migrates near the cell surface upon depletion of intracellular Ca2+ stores to oligomerize and activate Orai1. In an attempt to further elucidate the signaling pathways responsible for PMP generation we treated platelets with the STIM1 inhibitor SKF 96365. Preincubation with SKF 96365 nearly abolished PMP production induced by PAR4-AP, thrombin, convulxin, or the combination of PAR and collagen receptor agonist. Scanning Electron Microscopy of PAR4-AP stimulated platelets in suspension revealed extended filipodia and bag-like structures protruding from the platelet core which correlated with the size of PMPs as analyzed by flow cytometry. Pretreatment with the SKF 96365 or exclusion of extracellular Ca2+ prevented the formation of the microparticle-like extensions and blunted filipodia extension. Finally, confocal analysis of Orai1 staining on platelets spread on a collagen matrix and co-stimulated with PAR4-AP revealed Orai1 throughout the plasma membrane with intense staining of the microparticle-like structures. These data suggest that PMP generation is nucleated by STIM1 dependent Orai1 Ca2+ entry. Current efforts are focused on elucidating the mechanism by which PAR and collagen receptor agonists differentially regulate STIM1 or Orai1 activity to mediate PMP generation. Disclosures: No relevant conflicts of interest to declare.

2020 ◽  
Vol 21 (15) ◽  
pp. 5373 ◽  
Author(s):  
Kerstin Menck ◽  
Suganja Sivaloganathan ◽  
Annalen Bleckmann ◽  
Claudia Binder

Extracellular vesicles (EV) are secreted by all cell types in a tumor and its microenvironment (TME), playing an essential role in intercellular communication and the establishment of a TME favorable for tumor invasion and metastasis. They encompass a variety of vesicle populations, among them the well-known endosomal-derived small exosomes (Exo), but also larger vesicles (diameter > 100 nm) that are shed directly from the plasma membrane, the so-called microvesicles (MV). Increasing evidence suggests that MV, although biologically different, share the tumor-promoting features of Exo in the TME. Due to their larger size, they can be readily harvested from patients’ blood and characterized by routine methods such as conventional flow cytometry, exploiting the plethora of molecules expressed on their surface. In this review, we summarize the current knowledge about the biology and the composition of MV, as well as their role within the TME. We highlight not only the challenges and potential of MV as novel biomarkers for cancer, but also discuss their possible use for therapeutic intervention.


Author(s):  
J.M. Robinson ◽  
J.M Oliver

Specialized regions of plasma membranes displaying lateral heterogeneity are the focus of this Symposium. Specialized membrane domains are known for certain cell types such as differentiated epithelial cells where lateral heterogeneity in lipids and proteins exists between the apical and basolateral portions of the plasma membrane. Lateral heterogeneity and the presence of microdomains in membranes that are uniform in appearance have been more difficult to establish. Nonetheless a number of studies have provided evidence for membrane microdomains and indicated a functional importance for these structures.This symposium will focus on the use of various imaging modalities and related approaches to define membrane microdomains in a number of cell types. The importance of existing as well as emerging imaging technologies for use in the elucidation of membrane microdomains will be highlighted. The organization of membrane microdomains in terms of dimensions and spatial distribution is of considerable interest and will be addressed in this Symposium.


2021 ◽  
Vol 19 (1) ◽  
Author(s):  
Sonam Gurung ◽  
Dany Perocheau ◽  
Loukia Touramanidou ◽  
Julien Baruteau

AbstractThe use of exosomes in clinical settings is progressively becoming a reality, as clinical trials testing exosomes for diagnostic and therapeutic applications are generating remarkable interest from the scientific community and investors. Exosomes are small extracellular vesicles secreted by all cell types playing intercellular communication roles in health and disease by transferring cellular cargoes such as functional proteins, metabolites and nucleic acids to recipient cells. An in-depth understanding of exosome biology is therefore essential to ensure clinical development of exosome based investigational therapeutic products. Here we summarise the most up-to-date knowkedge about the complex biological journey of exosomes from biogenesis and secretion, transport and uptake to their intracellular signalling. We delineate the major pathways and molecular players that influence each step of exosome physiology, highlighting the routes of interest, which will be of benefit to exosome manipulation and engineering. We highlight the main controversies in the field of exosome research: their adequate definition, characterisation and biogenesis at plasma membrane. We also delineate the most common identified pitfalls affecting exosome research and development. Unravelling exosome physiology is key to their ultimate progression towards clinical applications.


2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Catarina Dias ◽  
Jesper Nylandsted

AbstractMaintenance of plasma membrane integrity is essential for normal cell viability and function. Thus, robust membrane repair mechanisms have evolved to counteract the eminent threat of a torn plasma membrane. Different repair mechanisms and the bio-physical parameters required for efficient repair are now emerging from different research groups. However, less is known about when these mechanisms come into play. This review focuses on the existence of membrane disruptions and repair mechanisms in both physiological and pathological conditions, and across multiple cell types, albeit to different degrees. Fundamentally, irrespective of the source of membrane disruption, aberrant calcium influx is the common stimulus that activates the membrane repair response. Inadequate repair responses can tip the balance between physiology and pathology, highlighting the significance of plasma membrane integrity. For example, an over-activated repair response can promote cancer invasion, while the inability to efficiently repair membrane can drive neurodegeneration and muscular dystrophies. The interdisciplinary view explored here emphasises the widespread potential of targeting plasma membrane repair mechanisms for therapeutic purposes.


1992 ◽  
Vol 20 (2) ◽  
pp. 246-250
Author(s):  
Lars Rönnbäck ◽  
Elisabeth Hansson

Cell volume was determined by measuring [14C]-3- O-methyl glucose uptake in astroglial-enriched primary cultures. Control cell volume was 3.20μl/mg protein. After incubation in 10 5M HgCl2 for 60 minutes, there was a 71% increase in cell volume. This increase was partially inhibited in the presence of the α1 receptor agonist, phenylephrine, or by the α2 receptor agonist clonidine, and was completely reversible by their respective antagonists, prazosine and yohimbine. The β receptor agonist, isoproterenol, which in itself increased cell volume, and 5-hydroxytryptamine (5HT) did not affect the HgCl2-induced changes in cell volume. 10 5M CH3HgCl increased cell volume by 26% after 30 minutes of incubation. This increase was not significantly influenced by adrenoceptor agonists or 5HT. It therefore seems that mercurial-induced changes in cell volume can be regulated by astroglial receptor stimulation.


1990 ◽  
Vol 36 (3) ◽  
pp. 183-192 ◽  
Author(s):  
A. R. Hardham ◽  
E. Suzaki

Glycoconjugates on the surface of zoospores and cysts of the pathogenic fungus Phytophthora cinnamomi have been studied using fluorescein isothiocyanate labelled lectins for fluorescence microscopy and flow cytometry, and ferritin- and gold-labelled lectins for ultrastructural analysis. Of the five lectins used, only concanavalin A (ConA) binds to the surface of the zoospores, including the flagella and water expulsion vacuole. This suggests that of accessible saccharides, glucosyl or mannosyl residues predominate on the outer surface of the zoospore plasma membrane. Early in encystment, a system of flat disc-like cisternae, which underlie the zoospore plasma membrane, vesiculate. These and other small peripheral vesicles quickly disappear. After the induction of encystment, ConA is no longer localised close to the plasma membrane but binds to material loosely associated with the cell surface. Quantitative measurements by flow cytometry indicate that the ConA-binding material is gradually lost from the cell surface. The cyst wall is weakly labelled, but the site of germ tube emergence stains intensely. During the first 2 min after the induction of encystment, material that binds soybean agglutinin, Helix pommatia agglutinin, and peanut agglutinin appears on the surface of the fungal cells. The distribution of this material, rich in galactosyl or N-acetyl-D-galactosaminosyl residues, is initially patchy, but by 5 min the material evenly coats most of the cell surface. Labelling of zoospores in which intracellular sites are accessible indicates that the soybean agglutinin binding material is stored in vesicles that lie beneath the plasma membrane. Quantitation of soybean agglutinin labelling shows that maximum binding occurs 2–3 min after the induction of encystment. Key words: cell surface, flow cytometry, lectins, pathogenic fungi, Phytophthora cinnamomi.


1995 ◽  
Vol 198 (8) ◽  
pp. 1711-1715 ◽  
Author(s):  
T A Heming ◽  
D L Traber ◽  
F Hinder ◽  
A Bidani

The role of plasma membrane V-ATPase activity in the regulation of cytosolic pH (pHi) was determined for resident alveolar and peritoneal macrophages (m theta) from sheep. Cytosolic pH was measured using 2',7'-biscarboxyethyl-5,6-carboxyfluorescein (BCECF). The baseline pHi of both cell types was sensitive to the specific V-ATPase inhibitor bafilomycin A1. Bafilomycin A1 caused a significant (approximately 0.2 pH units) and rapid (within seconds) decline in baseline pHi. Further, bafilomycin A1 slowed the initial rate of pHi recovery (dpHi/dt) from intracellular acid loads. Amiloride had no effects on baseline pHi, but reduced dpHi/dt (acid-loaded pHi nadir < 6.8) by approximately 35%. Recovery of pHi was abolished by co-treatment of m theta with bafilomycin A1 and amiloride. These data indicate that plasma membrane V-ATPase activity is a major determinant of pHi regulation in resident alveolar and peritoneal m theta from sheep. Sheep m theta also appear to possess a Na+/H+ exchanger. However, Na+/H+ exchange either is inactive or can be effectively masked by V-ATPase-mediated H+ extrusion at physiological pHi values.


1992 ◽  
Vol 101 (4) ◽  
pp. 873-883
Author(s):  
M.L. Lu ◽  
R.J. McCarron ◽  
B.S. Jacobson

It was recently reported that HeLa cells have three Arg-Gly-Asp-dependent collagen receptors that do not appear to be in the integrin family of extracellular matrix receptors and bind to either type I or IV collagen or to type I gelatin. It was our goal to determine how these receptors function in HeLa cell-substratum adhesion. We report here that the sequence of events by which the receptors mediate adhesion to collagen or gelatin is: (1) induction of cell attachment by specific collagen receptor-substratum interactions with culture dishes covalently coated with either type I collagen or gelatin - attachment is inhibited by soluble gelatin; (2) stabilization of attachment by exocytotic upregulation of the receptors to the basal plasma membrane, which was demonstrated by analyzing, during cell adhesion, the redistribution of the collagen receptors among the apical plasma membrane exposed to the culture medium, the basal plasma membrane contacting the culture dish, and an intracellular pool of plasma membrane vesicles; (3) the initiation of cell spreading by receptor clustering and cytoskeletal association. Cell spreading is a threshold effect with regard to the surface concentration of gelatin, indicating that collagen receptor clustering is a precondition to the onset of spreading. Observations consistent with this interpretation of the threshold effect are that cells attach but spread more slowly on a substratum that retards receptor clustering, and that collagen receptors, when viewed by immunofluorescence microscopy, form a punctate pattern of fluorescence in the basal plasma membrane during cell spreading. It is also shown that more collagen receptors co-isolate with nondenaturing detergent-stable cytoskeletal preparations after the collagen receptors have been either clustered by antibodies or gelatin in solution, or by a collagen matrix. This indicates that clustering drives the receptors to bind to the cytoskeleton and is a necessary step in the transition from cell attachment to cell spreading.


Development ◽  
1993 ◽  
Vol 118 (4) ◽  
pp. 1353-1361
Author(s):  
J.M. Baltz ◽  
J.D. Biggers ◽  
C. Lechene

Most cell types are relatively impermeant to H+ and are able to regulate their intracellular pH by means of plasma membrane proteins, which transport H+ or bicarbonate across the membrane in response to perturbations of intracellular pH. Mouse preimplantation embryos at the 2-cell stage, however, do not appear to possess specific pH-regulatory mechanisms for relieving acidosis. They are, instead, highly permeable to H+, so that the intracellular pH in the acid and neutral range is determined by the electrochemical equilibrium of H+ across the plasma membrane. When intracellular pH is perturbed, the rate of the ensuing H+ flux across the plasma membrane is determined by the H+ electrochemical gradient: its dependence on external K+ concentration indicates probable dependence on membrane potential and the rate depends on the H+ concentration gradient across the membrane. The large permeability at the 2-cell stage is absent or greatly diminished in the trophectoderm of blastocysts, but still present in the inner cell mass. Thus, the permeability to H+ appears to be developmentally regulated.


Author(s):  
Rosanna Serafini ◽  
Dickson D. Varner ◽  
Charles C. Love

Sign in / Sign up

Export Citation Format

Share Document