RUNX1 Is Required For Maintenance Of Established T-ALL Blasts

Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 3742-3742
Author(s):  
Christopher R Jenkins ◽  
Olena O Shevchuk ◽  
Hongfang Wang ◽  
Vincenzo Giambra ◽  
Samuel D Gusscott ◽  
...  

Abstract T-cell acute lymphoblastic leukemia (T-ALL) is a clinically aggressive malignancy of immature T cells. Intensive multiagent chemotherapy achieves cure in 80-90% of pediatric patients, but only 40% of adult patients survive beyond 5 years. Data from recent ChIP-seq studies has shown that RUNX1 binds throughout the T-ALL genome at sites co-occupied by known oncogenic transcription factors including TAL1 and NOTCH1. For this reason, it has been suggested that RUNX1 may be part of a transcriptional activation complex that drives an oncogenic gene expression program in this cell context. In contrast, next generation sequencing studies have recently identified heterozygous point mutations throughout the RUNX1 coding region in T-ALL including some which are predicted to encode truncated polypeptides resembling dominant negative alleles, thus raising the possibility that RUNX1 may function rather as a tumor suppressor in this context. In an effort to explore the functional role of RUNX1 in T-ALL, we examined the effect of RUNX1 knockdown in a broad panel of established human T-ALL cell lines and xenograft-expanded patient biopsy samples. Cells transduced with lentiviral shRNAs targeting coding and 3’ UTR regions of RUNX1 showed a clear growth disadvantage as compared to either non-transduced cells in the same culture or cells transduced with non-silencing shRNAs in parallel cultures. As well, absolute cell counts of cultures containing only shRUNX1-transduced cells demonstrated dramatically reduced growth rates as compared to either non-transduced or non-silencing shRNA-transduced controls. BrdU incorporation and CFSE dye dilution studies showed that most cell lines exhibited reduced proliferation in response to RUNX1 knock-down, while a subset of lines also showed reduced cell viability. These phenotypes were largely consistent across a panel of over 20 T-ALL cell lines and 4 xenograft-expanded patient samples, including several which harbored either nonsense or missense RUNX1 mutations. These results support the notion that established T-ALL cells are generally dependent on RUNX1 for continued cell growth and, in some cases, also for survival. We also explored candidate RUNX1 target genes which might be responsible for mediating the observed growth/survival phenotypes. Assembling a short list of the “usual suspects” including genes known to regulate growth of T-ALL cells generally (c-MYC, PTEN), to possess a substantial RUNX1 ChIP-seq peak in T-ALL cells (IGF1R, IL7R), or to be bona fide RUNX1 targets in other cell contexts (p21/WAF1, p27/KIP1), we performed western blot or flow cytometric analyses of multiple shRUNX1-transduced cell lines. We noted consistent regulation of some, but not all of these in a manner consistent with RUNX1 positively supporting cell growth. From these results, we conclude that RUNX1 plays a pro-oncogenic role in established T-ALL cells. We surmise that the complement of presumed loss-of-function RUNX1 mutations observed in patient T-ALLs may be indicative of its known roles in regulating normal T cell development such that loss-of-function mutations may lead to differentiation arrest and consequently promote tumor initiation. For the majority of T-ALLs that express wild-type RUNX1 proteins, however, our results suggest that RUNX1 acts functionally to support maintenance of the malignant clone by promoting expression of known oncogenic factors and repressing expression known tumor suppressors. Disclosures: Aster: Cell Signaling Technology: Consultancy; Merck, Inc.: Research Funding; Pfizer, Inc.: Research Funding; Genentech, Inc.: Honoraria.

Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 653-653
Author(s):  
Yizhen Li ◽  
Maoxiang Qian ◽  
Meenakshi Devidas ◽  
Wentao Yang ◽  
Stuart S. Winter ◽  
...  

Previous studies by us and others have linked germline genetic variants to the familial predisposition to childhood B-cell acute lymphoblastic leukemia (B-ALL), with pathogenic variants discovered in TP53, PAX5, ETV6, and IKZF1 (J. Clin. Oncol 2018, Nature Genet 2014, Lancet Oncol 2015, Cancer Cell 2018). However, genetic predisposition to T-ALL is much less understood. Rare care reports of T-ALL pedigrees with germline RUNX1 point to its potential role in ALL susceptibility. RUNX1 plays significant roles in definitive hematopoiesis and primarily functions as a transcription factor. RUNX1 germline variants are associated with familial platelet disorder, with a significant proportion of patients also developing myeloid malignancies. To comprehensively examine the pattern and prevalence of RUNX1 germline variation in T-ALL, we performed targeted germline sequencing of 1,231 cases enrolled on the Children's Oncology Group AALL0434 trial. In this largely unbiased T-ALL cohort, we identified 13 germline RUNX1 variants in 16 cases (Figure 1), including six missense (46.2%), two nonsense (15.4%), three frameshift (23.1%), and two indel variants (15.4%). These variants are divided into three groups: Group I, truncating both the DNA-binding RHD domain and the transcriptional activation AD domain (p.K117* and p.S141fs); Group II, truncating the AD domain only (p.Q213fs, p.R232fs, and p.Y287*); and Group III, missense and indel variants. To comprehensively characterize the function of these T-ALL-related RUNX1 variants, we performed a variety of biochemical and cellular assays in different model systems. Using reporter gene assays, we first directly evaluated the transcriptional activity of RUNX1 variants in Hela cells and identified both loss-of-function (e.g., Group I variants) and dominant-negative effects (e.g., p.G365R in Group III variants). Group I variants also showed dramatic subcellular mislocalization in the cytoplasm, with concomitant loss of CBFβ binding, both of which were significantly subtler for Groups II and III variants. Focusing on representative variants in these three groups (p.S141fs, p.R232fs, Y287*, and p.G365R), we next examined their effects on hematopoietic phenotypes in vitro. Ectopic expression of Group II and III variants in human CD34+ cells significantly increased CFU-M/GM colony formation and long-term proliferation, while repressing BFU-E colonies. Variant RUNX1 cells also showed defects in megakaryocyte and pre-T cell differentiation, with decreased apoptosis compared to cells expressing wild-type RUNX1. Expression of Group I variant led to phenotypes similar to that of empty vector, suggesting a complete loss of RUNX1 function. In parallel, we engineered isogenic T-ALL single clones with epitope-tagged RUNX1 variant introduced at the endogenous locus via CRISPR-Cas9 mediated homology recombination. Chromatin immunoprecipitation (ChIP)-seq profiling of these cells suggested a varying degree of changes in RUNX1 binding sites across the genome as a result of the RUNX1 genetic variation. On the other hand, RNA-seq profiling identified down-regulation of genes that were activated by wild-type RUNX1, again confirming the loss-of-function effects of these variants. Finally, we performed whole-genome seq of matched leukemia and germline samples and RNA-seq of leukemia cells in 7 T-ALL cases with RUNX1 predisposition variants. In this analysis, we observed a significant enrichment of JAK3 mutations (5 of 7 cases, 71.4%) compared to a cohort of 264 T-ALL with wild-type RUNX1 in the germline (P=3.39×10-7). By comparison, only 27.3% (3 of 7) of T-ALL with a somatic mutation in RUNX1 had concurrent JAK3 mutations in this cohort. Unsupervised clustering based on RNA-seq derived gene expression profile showed that RUNX1-mutated cases, either germline or somatic, clustered tightly with early T precursor (ETP) and near-ETP immunophenotypes. In conclusion, we comprehensively characterized 13 RUNX1 germline variants in T-ALL, ~40% of which are frameshift or nonsense. These variants result in a loss of function, by disrupting DNA binding or deleting the transcriptional activation domain, and in some cases in a dominant-negative fashion. RUNX1 genetic variation also results in significant defects in hematopoietic cell differentiation and functions in vitro, but additional somatic lesions are most likely required for overt leukemogenesis. Disclosures Gastier Foster: Incyte Corporation: Other: Commercial Research; Bristol Myers Squibb (BMS): Other: Commercial Research. Raetz:Pfizer: Research Funding. Zweidler-McKay:ImmunoGen: Employment. Mullighan:Illumina: Honoraria, Membership on an entity's Board of Directors or advisory committees, Other: sponsored travel; Pfizer: Honoraria, Other: speaker, sponsored travel, Research Funding; AbbVie: Research Funding; Loxo Oncology: Research Funding; Amgen: Honoraria, Other: speaker, sponsored travel. Hunger:Amgen: Consultancy, Equity Ownership; Bristol Myers Squibb: Consultancy; Novartis: Consultancy; Jazz: Honoraria. Relling:Servier Pharmaceuticals: Research Funding. Loh:Medisix Therapeutics, Inc.: Membership on an entity's Board of Directors or advisory committees.


Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 4630-4630
Author(s):  
Samuel D Gusscott ◽  
Florian Kuchenbauer ◽  
Andrew P Weng

Abstract Abstract 4630 T-cell acute lymphoblastic leukemia (T-ALL) is an aggressive cancer of immature T cells that often shows aberrant activation of the Notch1 signaling pathway. Several studies have utilized mRNA expression profiling to identify downstream mediators of oncogenic Notch signaling in this context. Since microRNAs (miRNAs) have in recent years been shown to play important roles in hematological maliganancy, we performed a microarray-based screen for Notch-dependent miRNA expression in T-ALL. Jurkat and P12-Ichikawa cell lines were treated with gamma-secretase inhibitor to block Notch signaling vs. DMSO control for 4 days and profiled using Exigon miRCURY LNA miRNA microarrays. Surprisingly few miRNAs were found to be regulated by this approach; however, one of the hits, miR-223, showed consistent upregulation after gamma-secretase treatment in Jurkat cells and 5 additional human T-ALL cell lines assessed by miRNA qPCR. This observation was unique to human T-ALL as murine models of T-ALL showed no evidence for Notch-dependent miR-223 expression. Given that canonical Notch signaling results in transcriptional activation, our observation that Notch signaling is associated with reduced miR-223 expression suggests an intermediary repressor may be involved. miR-223 has been reported to play an important role in normal granulopoiesis, to be expressed relatively highly in T-ALL with myeloid-like gene features, and most recently to accelerate Notch-mediated T-cell leukemogenesis. To explore potential functional consequences for Notch-dependent miR-223 repression in T-ALL, candidate miR-223 targets identified by TargetScan software were analyzed with Ingenuity Pathway Analysis software, which indicated IGF-1, insulin receptor, PTEN, and ERK5 signaling pathways as the top hits. We recently reported IGF1R signaling to be important for growth and viability of bulk T-ALL cells as well as for leukemia-initiating cell activity. Additionally, we reported that Notch signaling directly upregulates IGF1R transcription by binding to an intronic enhancer which is present between exons 21/22 in the human, but not mouse IGF1R locus. As miR-223 has previously been reported to target IGF1R mRNA and reduce its translation, we hypothesized that Notch signaling may also upregulate net IGF1R protein expression by repressing miR-223. To test this hypothesis, we transduced several human T-ALL cell lines with miR-223 retrovirus and observed a modest decrease in total IGF1R protein levels by western blot; however, no significant change was observed in surface IGF1R levels as assessed by flow cytometry. Addtionally, knockdown of miR-223 by lentiviral expression miR-223 target sequences (miR-223 “sponge”) resulted in modestly increased total IGF1R protein levels, but again showed no demonstrable effect on surface IGF1R levels. Of note, we also observed no apparent effect of either overexpression or knockdown of miR-223 on bulk cell growth or viability. We interpret these findings to suggest that Notch signaling does not have major effects on the miR transcriptome, and that up- or down-modulation of miR-223 in established T-ALL cells does not have significant effects on overall cell growth/viability. Further studies will be required to determine if miR-223 may act in concert with other Notch target genes to modulate cell physiology. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2015 ◽  
Vol 126 (23) ◽  
pp. 2440-2440
Author(s):  
Tian Yuan ◽  
Yaling Yang ◽  
Jeffrey You ◽  
Daniel Lin ◽  
Kefeng Lin ◽  
...  

Abstract Introduction: T-cell acute lymphoblastic leukemia (T-ALL) is an aggressive hematologic malignancy accounting for 15% of pediatric and 25% of adult acute lymphoblastic leukemia (ALL) cases. With current chemotherapies and transplantation therapy, there are still 25-50% T-ALL patients that suffer from relapse and have a poor outcome. MicroRNAs (miRNAs or miRs) are endogenous small non-coding RNAs (containing about 22 nucleotides in length). miRs function at posttranscriptional level as negative regulators of gene expression and exert their regulatory function through binding to target mRNAs and silencing gene expression. To better understand the pathogenesis and develop the new therapeutic targets of T-ALL, we have developed a Pten tumor suppressor knockout T-ALL mouse model and profiled miRs from the mouse Pten deficient T-ALL. miR-26b was one of the miRs that were found down-regulated in the mouse Pten deficient T-ALL. Recent studies showed that the aberrant expression of miR-26b is implicated in several types of cancer. The expression level of miR-26b and its role of in T-ALL, however, are unknown. We investigated if the expression level of miR-26b is aberrant in T-ALL and the effect of potentially altered expression on the growth of human T-ALL cells. Methods: We conducted miR array profiling to identify differentially expressed miRs in the mouse Pten deficient T-ALLs compared with preneoplastic thymocyte controls. We validated expression levels of several miRs, including miR-26b, that are differentially expressed in mouse and human T-ALL cells using quantitative RT-PCR. We also overexpressed miR-26b using a lentivirus based vector in human T-ALL cell lines to assess its effect on cell growth and apoptosis. Results: Employing miR array profiling, we identified a subset of miRs that exhibited marked altered expression in the mouse Pten deficient T-ALL cells. Quantitative RT-PCR validated that the expression level of miR-26b in the mouse Pten deficient T-ALL cells was markedly lower in comparison to that of preneoplastic thymocytes. To determine if miR-26b expression level is also altered in human T-ALL, we performed quantitative RT-PCR on a panel of human T-ALL cell lines. Indeed, the expression level of miR-26b is significantly lower in the human T-ALL cell lines when compared with that of normal thymocytes. To functionally assess if miR-26b plays a role in the cell growth of human T-ALL cells, we expressed exogenous miR-26b in a panel of human T-ALL cell lines. We demonstrated that the expression of exogenous miR-26b significantly reduced the proliferation and promoted apoptosis of several human T-ALL cell lines. Conclusions: Our results demonstrated that miR-26b is down-regulated in T-ALL and the expression of exogenous miR-26b elicits deceased cell proliferation and increased apoptosis of human T-ALL. These results suggest that miR-26b may function as a tumor suppressor in the development of T-ALL and further characterization of the target and regulation of miR-26b may have therapeutic implications. Disclosures No relevant conflicts of interest to declare.


Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. 3569-3569
Author(s):  
Ye Shen ◽  
Chun Shik Park ◽  
Koramit Suppipat ◽  
Takeshi Yamada ◽  
Toni-Ann Mistretta ◽  
...  

Abstract Acute lymphoblastic leukemia (ALL) is the most common hematological malignancy in children. Although risk-adaptive therapy, CNS-directed chemotherapy and supportive care have improved the survival of ALL patients, disease relapse is still the leading cause of cancer-related death in children. Therefore, new drugs or novel multi-drug combinations are needed as frontline treatments for high-risk patients and as salvage agents for relapsed disease. T-cell ALL (T-ALL) is a subset of ALL that exhibits activating mutations of NOTCH1 in more than 50% of the patients. However, the use of gamma-secretase inhibitors to reduce NOTCH1 activity has not been successful in patients due to limited response and toxicity. Therefore, identification of genetic factors that cooperate with T-ALL leukemogenesis is needed for the development of alternative therapies. KLF4 is a transcription factor that functions as a tumor suppressor or an oncogene depending on cellular context. Our data showed significant reduction of KLF4 transcripts in lymphoblasts from T-ALL patients compared to blood and bone marrow cells from healthy individuals. In consistent with reduced KLF4 levels, these patients exhibit hyper-methylation of CpG islands located between nt -811 and +1190 relative to KLF4 transcription start site. From these findings we hypothesized that KLF4 has tumor suppressor function in T-ALL leukemogenesis. To test our hypothesis, we transduced 5-FU treated bone marrow (BM) cells from control (Klf4fl/fl), Klf4 null (Klf4fl/fl; Vav-iCre) and Klf4 heterozygous (Klf4fl/+; Vav-iCre) mice with retrovirus carrying a NOTCH1 activating mutant (L1601P-ΔP) and then transplanted these BM cells into irradiated recipient mice. In contrast to controls, mice transplanted with transduced Klf4-null BM cells developed T-ALL with significantly higher penetrance (Klf4 null 76.5% v.s. control 21.3%) and shorter latency (Klf4 null 93 days v.s. control 130 days). Interestingly, Klf4 heterozygous group shows similar survival kinetics as Klf4 null group, suggesting that Klf4 haploinsufficiency is enough to accelerate onset of leukemia. To investigate the effect of Klf4 deletion in established leukemia cells, we transplanted NOTCH1 L1601P-ΔP transduced BM cells from Klf4fl/fl; CreER+ mice to induce leukemia. Post-transplantation deletion of the Klf4 gene by tamoxifen administration was able to accelerate T-ALL development compared to mice injected with vehicle. On the cellular level, loss of KLF4 led to increased proliferation of leukemia cells as assessed by in vivo BrdU incorporation, which correlated with decreased levels of p21 protein. Limited dilution transplantation of primary leukemia cells into secondary recipients showed a 9-fold increase of leukemia initiating cells (LIC) frequency in Klf4null leukemia cells compared to controls, suggesting that KLF4 controls expansion of LIC in T-ALL. To elucidate molecular mechanism underlying KLF4 regulation in T-ALL cells, we performed microarray and ChIP-Seq in control and Klf4 null CD4+CD8+ leukemia cells. Combined analyses revealed 202 genes as KLF4 direct targets, of which 11 genes are also deregulated in human T-ALL cells by comparing with published microarray datasets. One of the top upregulated genes is Map2k7, which encodes a kinase upstream of the JNK pathway. Immunoblots in leukemia cells confirmed increased expression of MAP2K7 protein and enhanced phosphorylation of its downstream targets JNK and ATF2. To further investigate the role of JNK pathway in T-ALL, we tested JNK inhibitor SP600125 in human T-ALL cell lines (KOPTK1, DND41, CCRF-CEM, MOLT3). Interestingly, SP600125 showed dose-dependent cytotoxicity in all human T-ALL cell lines tested regardless of their NOTCH1 status. Overall our results showed for the first time that KLF4 functions as a tumor suppressor in T-ALL by regulating proliferation of leukemia cells and frequency of LIC. Additional study elucidated that KLF4 suppresses the JNK pathway via direct transcriptional regulation of MAP2K7. Moreover, the vulnerability of human T-ALL cell lines to JNK inhibition provides a novel target for future therapy in T-ALL patients. Disclosures No relevant conflicts of interest to declare.


Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 2537-2537
Author(s):  
Ashwini M Patil ◽  
Stefanie Kesper ◽  
Vishal Khairnar ◽  
Marco Luciani ◽  
Michael Möllmann ◽  
...  

Introduction: The thymus is a specialized hematopoietic organ, which is responsible for the generation of T cells. The central thymic cell type controlling T cell development are thymic epithelial cells (TECs). Based on their specific function and anatomic location TECs are separated into cortical and medullary subsets (cTECs and mTECs). cTECs express pivotal NOTCH-ligands such as DLL4 controlling T cell lineage commitment while mTECs play a central role in negative selection of developing T cells. Acquisition of NOTCH1 gain-of-function mutations play a central role in acute T cell lymphoblastic leukemia (T-ALL) development. During T-ALL leukemogenesis aberrant expression of transcription factors such as SCL/TAL1 and LMO1 block T cell differentiation and increase self-renewal while NOTCH1 mutations promote survival and proliferation. Since most acquired NOTCH1 mutations still require ligand binding to exert augmented signaling we propose DLL4-expressing TECs playing a critical role during T-ALL leukemogenesis. Methods: In the present study, we used a Scl/Lmo1 T-ALL transgenic mouse model, murine ANV and TE71 TEC cell lines and human T-ALL cell lines (Jurkat, ALL-SIL, DND-41, and HPB-ALL) to investigate TEC dynamics and function in the T-ALL context. Results: First, we demonstrated T-ALL supporting potential of TEC cell lines in vitro, which was comparable to the mesenchymal cell line OP9. Next, we showed in the Scl/Lmo1 T-ALL mouse model which had a mean survival rate of 90 days that preleukemic thymocytes displayed a striking upregulation of Notch1 target genes. Interestingly, fluorescence microscopy revealed a relative expansion of cortical and a relative reduction of the medullary thymic areas in Scl/Lmo1 thymi (Fig. 1A). Correspondingly, absolute numbers of cTECs expanded while mTEC numbers declined (Fig. 1B). Gene expression profiling of sorted preleukemic Scl/Lmo1 cTECs revealed upregulation of the chemokine CXCL10 (Fig. 1C). Moreover, increased CXCL10 chemokine concentrations were detected in Scl/Lmo1 thymic interstitial fluid (Fig.1D). Strikingly, we demonstrated T-ALL dependence of TEC Cxcl10 upregulation. We showed that Cxcl10 upregulation in TEC cell lines was only induced by direct cellular contact with Scl/Lmo1 thymocytes while wild-type control thymocytes did not alter TEC cell line Cxcl10 expression (Fig. 1E). Next, a high proportion of the CXCL10 receptor CXCR3 expressing cells was revealed in Scl/Lmo1 thymi (Fig. 1F) and by human T-ALL cell lines. Finally, we demonstrated a CXCL10 dependent pro-survival effect within cultured SCL/LMO1 thymocytes (Fig. 1G), which was associated with the activation of NOTCH1 signaling (Fig. 1H). Conclusions: In summary, the data support a novel T-ALL-promoting regulatory circuit in which emerging T-ALL lymphoblasts induce CXCL10 in expanding TECs which positively feeds back to T-ALL cells via the CXCL10 receptor CXCR3. Disclosures Dührsen: Celgene: Research Funding; Takeda: Consultancy, Honoraria; AbbVie: Consultancy, Honoraria; Gilead: Consultancy, Honoraria; Amgen: Consultancy, Honoraria, Research Funding; Teva: Honoraria; Novartis: Consultancy, Honoraria; Alexion: Honoraria; Roche: Honoraria, Research Funding; CPT: Consultancy, Honoraria; Janssen: Honoraria. Göthert:Proteros Biostructures: Consultancy; Novartis: Consultancy, Honoraria, Other: Travel support; Pfizer: Consultancy, Honoraria; Incyte: Consultancy, Honoraria, Other: Travel support; Bristol-Myers Squibb: Consultancy, Honoraria, Other: Travel support; AOP Orphan Pharmaceuticals: Honoraria, Other: Travel support.


Blood ◽  
2005 ◽  
Vol 106 (11) ◽  
pp. 3005-3005
Author(s):  
Arthur Lau ◽  
Jon C. Aster ◽  
Andrew P. Weng

Abstract We recently reported that activating mutations in the NOTCH1 receptor occur in a high percentage of primary human T-cell acute lymphoblastic leukemias (T-ALL). Withdrawal of NOTCH signals by treatment with γ-secretase inhibitors (GSI) or by transduction with a dominant-negative Mastermind-like-1 polypeptide (a specific NOTCH pathway inhibitor) induces growth arrest of many T-ALL cell lines, suggesting that NOTCH supplies signals that are needed for maintenance of growth of T-ALL cells. In order to identify downstream targets of NOTCH that mediate these effects, we performed gene expression profiling on NOTCH signaling-dependent T-ALL cell lines before and after NOTCH inhibition. Among a number of identified candidate genes was c-MYC, which was of particular interest given its importance in promoting cellular growth and its known dysregulation in a number of hematolymphoid neoplasms. c-MYC was down-regulated following NOTCH inhibition, and rapidly up-regulated following release of NOTCH inhibition, even in the presence of protein synthesis inhibitors, suggesting that it is a direct NOTCH transcriptional target. Further, a subset of murine and human T-ALL cell lines were rescued from GSI-mediated growth arrest by c-MYC-expressing retroviruses. The failure of c-MYC to rescue some NOTCH-dependent cell lines likely stems from differences in cellular context, such as collaborating oncogenic lesions and/or the stage of T cell development the cell lines recapitulate. Nevertheless, these data implicate c-MYC as a major downstream target of NOTCH in T-ALL.


Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 1921-1921 ◽  
Author(s):  
Francesca Chiarini ◽  
Federica Fala ◽  
Francesca Ricci ◽  
PierLuigi Tazzari ◽  
Annalisa Astolfi ◽  
...  

Abstract Constitutively activated phosphatidylinositol 3-kinase (PI3K)/Akt/mammalian Target of Rapamycin (mTOR) signaling is a common feature of T-cell acute lymphoblastic leukaemia (T-ALL). Recently, it was demonstrated that activated Notch-1 leads to constitutive activation of the PI3K/Akt/mTOR pathway by HES1-mediated transcriptional suppression of the PTEN gene. In addition, PTEN is mutated in about 20% of T-ALL patients, and virtually all T-ALL cell lines that are resistant to Notch-1 inhibition with γ-secretase inhibitors, contain mutations leading to either no or low PTEN expression. These findings lend compelling weight for the application of PI3K/Akt/mTOR inhibitors in T-ALL. However, our knowledge of PI3K/Akt/mTOR signalling in T-ALL is still limited and it is not clear whether it could be an effective target for innovative therapeutic strategies. Here, we have characterized PI3K/Akt/mTOR signalling in T-ALL cell lines (Jurkat, MOLT-4, CEM) lacking PTEN expression, including one (CEM-R) which over expresses high levels of the membrane transporter, 170-kDa P-glycoprotein (P-gp), one of the main determinants of multidrug-resistance. While MOLT-4 cells display wild-type p53, both Jurkat and CEM have a non-functional p53 pathway. Moreover, we have analyzed the therapeutic potential of the dual PI3K/mTOR inhibitor, PI-103, a small synthetic molecule of the pyridofuropyrimidine class, on both T-ALL cell lines and patient samples. T-ALL cell lines expressed p110α, p110β, p110γ, and p110α PI3K. Moreover, they expressed Akt1 and Akt2, both of which were found to be constitutively phosphorylated on Ser 473 and Ser 474, respectively, by immunoprecipitation experiments. Treatment of T-ALL cell lines with selective pharmacological inhibitors of p110 PI3K isoforms, demonstrated that only a p110α PI3K inhibitor (PIK75) was cytotoxic, resulting in a 40–50% reduction of cell growth when used at 2 μM. Consistently, only PIK75 induced Akt1 and Akt2 dephosphorylation on Ser 473 or Ser 474, respectively, hinting that p110α is the most important isoform for the activation of downstream signalling events. PI-103 was cytotoxic to all T-ALL cell lines including P-gp overexpressing cells, as it reduced cell growth by approximately 70% when employed at 2 μM for 24 h. PI-103 IC50 ranged from 0.5 to 1.0 μM at 24 h. PI-103 treatment resulted in apoptotic cell death (about 30% at 6 h of exposure, when employed at 0.75 μM), as demonstrated by Annexin V/propidium iodide staining and cytofluorimetric analysis. PI-103 caused both Akt1 and Akt2 dephosphorylation, accompanied by dephosphorylation of the Akt downstream target, glycogen synthase kinase (GSK) -3β. Also mTOR downstream targets were dephosphorylated in response to PI-103, including p70S6 kinase, ribosomal S6 protein, and 4E-BP1. Moreover, PI-103 resulted in lower levels of c-Myc expression. PI-103 activated caspase-3, -8, and -9. In contrast, an mTOR inhibitor (rapamycin) was less cytotoxic than PI-103 (25–30% reduction of cell growth at 100 nM after 24 h), blocked cells in the G1 phase of the cell cycle, and was much less effective in inducing apoptosis (about 5% at 6 h of treatment). Remarkably, rapamycin was almost completely ineffective against CEM-R cells. A combination consisting of PIK75 and rapamycin was less cytotoxic to T-ALL cell lines than PI-103 alone. Furthermore, rapamycin treatment, at variance with PI-103, resulted in an overactivation of the Akt/ GSK-3β axis, as documented by increased phosphorylation levels of both Akt and GSK- 3β. PI-103 was also cytotoxic to primary lymphoblasts from patients with T-ALL (IC50: 0.15 nM at 96 h), displaying constitutive phosphorylation of Akt and 4E-BP1, as well as low/absent PTEN expression. These data indicate that multi-targeted therapy towards PI3K and mTOR, may serve as an efficient treatment towards T-ALL cells (including those over expressing P-gp and independently from p53 state) which require upregulation of PI3K/Akt/mTOR signaling for their survival and growth.


Blood ◽  
2017 ◽  
Vol 130 (Suppl_1) ◽  
pp. 716-716
Author(s):  
Sujan Piya ◽  
Hong Mu ◽  
Seemana Bhattacharya ◽  
Teresa McQueen ◽  
Richard E Davis ◽  
...  

Abstract Background: Salvage options for patients with relapsed T cell acute lymphoblastic leukemia (T-ALL) are limited, with less than 25% of these patients achieving second remission 1, 2. 70% of T-ALL cases have activating mutations of the NOTCH1 pathway, which transcriptionally activates MYC by binding to its `superenhancer' region 3, 4. Other deregulated oncogenic pathways in T-ALL include PI3K/Akt, the anti-apoptotic Bcl-2 family, and CDKN2A/2B cell cycle regulators 5, 6. The NOTCH1-MYC regulatory circuit is an attractive therapeutic target, but clinical development of gamma-secretase inhibitors (GSI) to target NOTCH1 has been limited by 'on target' toxicities. A better target may be BRD4, a critical component of superenhancer complexes that binds to acetylated histone (3 and 4) and drives NOTCH1 mediated MYC transcription7. ARV-825 is a hetero-bifunctional PROteolysis TArgeting Chimera (PROTAC) that has 3 components: a thienodiazepine-based BRD4 ligand, a linker arm, and a cereblon-binding ligand. ARV-825 recruits BRD4 to the E3 ubiquitin ligase cereblon and leads to efficient and sustained degradation of BRD4, resulting in down-regulation of MYC. Methods: We investigated the effectiveness of ARV-825 against T-ALL cell lines, including GSI-resistant lines. Since microenvironmental signals are critical for the survival of T-ALL, we specifically tested the impact of BRD4 degradation on CD44/CD44v, which integrates cell-extrinsic microenvironmental signals and is part of cysteine transporter that maintains low intra-cellular reactive oxygen species (ROS), necessary for T-ALL survival and the persistence of disease. We also examined the anti-leukemic effect of ARV-825 in a T-ALL patient-derived xenograft (PDX) mouse model of disseminated leukemia with a constitutively active NOTCH1 mutation. Results: The IC50s for all tested T-ALL cell lines at 72 hours were in the low nanomolar range (< 50 nM). ARV-825 leads to sustained degradation of BRD4 and down-regulation of its transcriptional targets MYC, Bcl-2 and Bcl-XL and inhibits cell proliferation and induces apoptosis in GSI-sensitive (HPB-ALL, KOPT1) and GSI-resistant (MOLT4, SUPT1) cell lines. Mass cytometry based proteomic analysis (CyTOF) and immunoblotting showed that ARV-825 down-regulated cell intrinsic oncogenic molecules: transcription factors Myc and NFkB, cell cycle regulator CDK6, activated PI3K/Akt, and anti-apoptotic Bcl2 family proteins. In addition ARV-825 down regulated two key molecules involved in leukemia-stroma interaction; CD44 (Fig. 1), and CD98, a component of amino acid transporters xCT, LAT1 and 2, both essential in regulation of oxidative stress. Quantitative PCR and immunoblotting analysis confirmed the transcriptional down regulation of total CD44 and CD44 variants 8-10 (2-fold change treated vs . untreated). As a functional correlate of down-regulation of CD98/CD44/CD44v, flow cytometry confirmed increased intracellular ROS generation (Fig. 2). Finally, in a PDX mouse model of human T-ALL, ARV-825 treatment resulted in lower leukemia burden (confirmed by flow cytometry for human CD45+ cells in bone marrow) and better survival compared to vehicle-treated control mice (p=0.002) (Fig.3). Reference: 1. Marks DI, Rowntree C. Management of adults with T-cell lymphoblastic leukemia. Blood 2017; 129(9): 1134-1142. 2. Litzow MR, Ferrando AA. How I treat T-cell acute lymphoblastic leukemia in adults. Blood 2015; 126(7): 833-41. 3. Sanchez-Martin M, Ferrando A. The NOTCH1-MYC highway toward T-cell acute lymphoblastic leukemia. Blood 2017; 129(9): 1124-1133. 4. Demarest RM, Ratti F, Capobianco AJ. It's T-ALL about Notch. Oncogene 2008; 27(38): 5082-91. 5. Girardi T, Vicente C, Cools J, De Keersmaecker K. The genetics and molecular biology of T-ALL. Blood 2017; 129(9): 1113-1123. 6. Joshi I, Minter LM, Telfer J, Demarest RM, Capobianco AJ, Aster JC et al. Notch signaling mediates G1/S cell-cycle progression in T cells via cyclin D3 and its dependent kinases. Blood 2009; 113(8): 1689-98. 7. Loven J, Hoke HA, Lin CY, Lau A, Orlando DA, Vakoc CR et al. Selective inhibition of tumor oncogenes by disruption of super-enhancers. Cell 2013; 153(2): 320-34. Disclosures Qian: 4Arvinas, LLC. New Haven, CT: Employment. Raina: 4Arvinas, LLC. New Haven, CT: Employment. McKay: 6 ImmunoGen, Inc.Waltham, MA: Employment. Kantarjian: Novartis: Research Funding; Amgen: Research Funding; Delta-Fly Pharma: Research Funding; Bristol-Meyers Squibb: Research Funding; Pfizer: Research Funding; ARIAD: Research Funding. Andreeff: Daiichi Sankyo: Consultancy.


Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. 1279-1279 ◽  
Author(s):  
Christopher R Jenkins ◽  
Hongfang Wang ◽  
Olena O Shevchuk ◽  
Sonya H Lam ◽  
Vincenzo Giambra ◽  
...  

Abstract Abstract 1279 T-cell acute lymphoblastic leukemia (T-ALL) is an aggressive malignancy characterized by the clonal outgrowth of developmentally arrested T-lymphoid blasts. Notch signaling is activated by mutation of NOTCH1 and/or FBW7 in over half of cases, and ultimately results in increased expression of target genes via the NOTCH/CSL transcriptional complex. Enforced expression of activated NOTCH1 in mouse hematopoietic progenitors leads to the development of clonal T-cell leukemias, suggesting that collaborating mutations are required for establishment and/or propagation of malignant clones. To identify candidate collaborating loci, Beverly and Capobianco performed a retroviral insertional mutagenesis screen in mice expressing a relatively weak activated Notch1 transgene and found recurrent insertions into Ikaros (Ikzf1). These insertions resulted in expression of dominant negative isoforms of Ikaros and thus potentiated Notch signaling since Ikaros and Notch/CSL compete for occupancy at target gene regulatory elements. In an attempt to identify collaborating mutations outside of the Notch pathway, we performed a similar screen, but employed instead a very potent activated NOTCH1 allele (ΔE) in hopes of saturating the Notch signaling pathway. We thus cloned out the insertion sites from 88 primary mouse leukemias generated by transduction of bone marrow with ΔE retrovirus. While recurrent insertions into Ikzf1 were again identified, we also observed frequent insertions into other regions including the Runx3 locus. The Runx3 integrations were tightly clustered in a region 40–60kb upstream of the transcriptional start site, suggesting the retroviral LTR might be inducing an increase in Runx3 expression. A single integration upstream of Runx1 was also identified in a region frequently mutated in similar screens. Of note, analysis of publically available gene expression profile data revealed that RUNX1 and RUNX3 are ubiquitously expressed in patient T-ALL samples. In order to functionally characterize the roles of RUNX1 and RUNX3 in T-ALL, we utilized lentiviral shRNAs to knock down RUNX1 and/or RUNX3 across a broad panel of 26 human T-ALL cell lines. Despite recent studies suggesting RUNX1 may act as a tumor suppressor in T-ALL, we observed the overwhelming majority of cell lines to show substantial growth defects after knock-down of RUNX1/3 as measured by competitive growth assay. These results were confirmed in a subset of cell lines and also in xenograft-expanded primary T-ALL samples by BrdU incorporation/DNA content assays which showed reduced proliferation/G1 cell cycle arrest following RUNX1/3 knock-down. Conversely, overexpression of RUNX3 induced T-ALL cells to proliferate more rapidly and to resist ABT-263-induced apoptosis. To explore potential target genes responsible for these pro-growth/survival effects, we mined available ChIP-Seq data and found NOTCH1/CSL and RUNX1 binding sites to co-localize within IGF1R and IL7R loci at intronic enhancer-like regions with associated H3K4me1>H3K4me3 marks and reduced H3K27me3 marks. Importantly, we show that NOTCH1 and RUNX factors co-regulate surface protein expression of IGF1R and IL7R in a synergistic/additive manner. As we and others have previously demonstrated important roles for both IGF1R and IL7R in T-ALL cell growth and leukemia-initiating activity, these studies reveal a novel collaborative mechanism between NOTCH1 and RUNX proteins in supporting propagation of established T-ALL disease. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2016 ◽  
Vol 128 (22) ◽  
pp. 1749-1749
Author(s):  
Rebecca L Boddicker ◽  
Xueju Wang ◽  
Surendra Dasari ◽  
Grzegorz S. Nowakowski ◽  
Konstantinos N Lazaridis ◽  
...  

Abstract Background: Peripheral T-cell lymphomas (PTCLs) are aggressive non-Hodgkin lymphomas with marked clinical, pathological, and molecular heterogeneity. Outcomes following standard therapy generally are poor; however, few candidate therapeutic targets have been identified for precision medicine approaches. Retinoic acid receptor alpha (RARA) is a transcription factor that modulates cell growth and differentiation in response to natural or synthetic retinoids. Retinoids have been used successfully to treat acute promyelocytic leukemia and some cutaneous T-cell lymphomas (CTCLs). However, the function of RARA and the action of retinoids in PTCL have not been defined. Methods:Based on identification of a PTCL patient with a non-synonymous point mutation, RARA R394Q, identified in the Mayo Clinic Center for Individualized Medicine, we sought to characterize the role of RARA in PTCL cells. To investigate the role of wild-type and mutant RARA, we constructed expression vectors containing either wild-type RARA or RARA R394Q coding sequences, and also used siRNAs targeting RARA to study the role of native RARA expression. Cell lines derived from post-thymic T-cell malignancies were used for in vitro studies, including HuT78 and Mac-1 (both derived from circulating tumor cells from CTCL patients) and Karpas 299 (from an ALK-positive anaplastic large cell lymphoma). Following RARA overexpression or knockdown, we measured cell growth, cell cycle regulation, and sensitivity to synthetic retinoids. In addition, RNA sequencing and pathway analysis were performed to profile the transcriptomic response to retinoids in malignant T cells. Results:In two RARAlow cell lines, Karpas 299 and HuT78, overexpression of wild-type RARA or RARA R394Q significantly increased cell growth (p<0.001), with a greater increase observed from mutant versus wild-type RARA in Karpas 299 (136% of control versus 122%; p=0.04). Accordingly, knockdown of wild-type RARA in the RARAhigh cell line, Mac-1, resulted in a 22% inhibition of cell growth (p=0.0002). This inhibition specifically was associated with G1 cell cycle arrest (120% of control; p=0.004) and decreased protein expression of the G1-S-associated cyclin-dependent kinases, CDK2, CDK4, and CDK6. These kinases were up-regulated by overexpression of RARA in RARAlow HuT78 cells. The relatively RARA-specific retinoid, AM80 (tamibarotene), and the less specific retinoid, all-trans retinoic acid (ATRA), resulted in RARA protein degradation, cell growth inhibition that was both dose-dependent and proportional to baseline RARA expression, G1 arrest, and CDK protein up-regulation. Gene-set enrichment analysis (GSEA) of transcriptome data confirmed that genes down-regulated by AM80 were highly enriched for regulators of cell cycle and particularly G1-S transition. Finally, overexpressing RARA in RARAlow Karpas 299 and HuT78 cell lines significantly increased the ability of AM80 to inhibit CDK2/4/6 expression and cell growth (16% to 23% greater growth inhibition than control; p<0.05). Conclusions:RARA drives cyclin-dependent kinase expression and G1-S transition in malignant T cells, and promotes cell growth. These functions may be enhanced by specific RARA gene mutations. Synthetic retinoids inhibit these functions in a dose-dependent fashion, and are most effective in cells with high RARA expression. These data suggest RARA as a candidate therapeutic target in some PTCL patients. Disclosures Nowakowski: Celgene: Research Funding; Morphosys: Research Funding; Bayer: Consultancy, Research Funding.


Sign in / Sign up

Export Citation Format

Share Document