Identification Of FOXO3A As a Key Downstream Target For The Oncogenic JAK2V617F

Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 4108-4108
Author(s):  
Masaki Kobayashi ◽  
Marito Araki ◽  
Yumi Hironaka ◽  
Akimichi Ohsaka ◽  
Norio Komatsu

Abstract A gain-of-function mutant JAK2 has been demonstrated to play a causal role in myeloproliferative neoplasms (MPN) development. The mutant JAK2, typically a substitution of position 617 valine (V) to phenylalanine (F) (hereinafter called JAK2V617F), activates STAT, Akt, and ERK pathways, which subsequently promotes cell proliferation. Although these pathways are well documented, their downstream effectors in MPN are still poorly understood. FOXO3A, a subfamily of Forkhead transcription factors, paradoxically regulates cell death and survival in a variety of cells. We and others have previously shown that an oncogene product Bcr-Abl tyrosine kinase suppresses FOXO3A activity by phosphorylation and subsequently represses cell death in chronic myelogenous leukemia (CML), proposing a potential therapeutic strategy for CML treatment. Thus, defining FOXO3A function and uncovering its regulation in MPN are important for the understanding of this disease and the development of a novel therapeutic strategy. To demonstrate this, we employed a model cell line Ba/F3/EpoR that requires IL-3 for survival but becomes independent of the cytokine when JAK2V617F is expressed. When JAK2V617F-expressing Ba/F3/EpoR cells were treated with a JAK2 inhibitor, FOXO3A phosphorylation diminished in a dose-dependent manner. The trend of diminution paralleled to the reduction of phospho-STAT5, a major JAK2V617F substrate, suggesting that FOXO3A phosphorylation is regulated by JAK2V617F activity. Removal of JAK2 inhibitor from the media induced a massive FOXO3A phosphorylation within 20 minutes in JAK2V617F-expressing but not in the wild-type JAK2-expressing Ba/F3/EpoR cells. This observation indicates that at least in this model system, JAK2V617F positively modulates the phosphorylation of FOXO3A. To further investigate the function of FOXO3A in JAK2V617F-expressing Ba/F3/EpoR cells, we knocked down FOXO3A expression by shRNA. When treated with a JAK2 inhibitor to induce apoptotic cell death, FOXO3A-knocked down cells were more resistant to the inhibitor than the control cells. This strongly suggests that when JAK2V617F activity is blocked and subsequently FOXO3A is dephosphorylated, FOXO3A induces apoptosis in JAK2V617F-expressing cells. Finally, we elucidated that the inhibition of JAK2V617F activity results in a reduction of FOXO3A phosphorylation and the induction of apoptosis in CD34-positive cells obtained from MPN patients. Taken together, we propose a model that shows JAK2V617F induces FOXO3A phosphorylation and subsequently blocks FOXO3A activity to repress apoptosis in JAK2V617F positive MPN cells. Disclosures: Kobayashi: Sysmex Corporation: Employment. Komatsu:Sysmex Corporation: Research Funding.

2021 ◽  
Vol 22 (15) ◽  
pp. 8147
Author(s):  
Young Yun Jung ◽  
Chulwon Kim ◽  
In Jin Ha ◽  
Seok-Geun Lee ◽  
Junhee Lee ◽  
...  

Pyrimethamine (Pyri) is being used in combination with other medications to treat serious parasitic infections of the body, brain, or eye and to also reduce toxoplasmosis infection in the patients with HIV infection. Additionally, Pyri can display significant anti-cancer potential in different tumor models, but the possible mode of its actions remains unclear. Hence, in this study, the possible anti-tumoral impact of Pyri on human chronic myeloid leukemia (CML) was deciphered. Pyri inhibited cell growth in various types of tumor cells and exhibited a marked inhibitory action on CML cells. In addition to apoptosis, Pyri also triggered sustained autophagy. Targeted inhibition of autophagy sensitized the tumor cells to Pyri-induced apoptotic cell death. Moreover, the activation of signal transducer and activator of transcription 5 (STAT5) and its downstream target gene Bcl-2 was attenuated by Pyri. Accordingly, small interfering RNA (siRNA)-mediated STAT5 knockdown augmented Pyri-induced autophagy and apoptosis and promoted the suppressive action of Pyri on cell viability. Moreover, ectopic overexpression of Bcl-2 protected the cells from Pyri-mediated autophagy and apoptosis. Overall, the data indicated that the attenuation of STAT5-Bcl-2 cascade by Pyri can regulate its growth inhibitory properties by simultaneously targeting both apoptosis and autophagy cell death mechanism(s).


2021 ◽  
Author(s):  
Amy Tarangelo ◽  
Joon Tae Kim ◽  
Jonathan Z Long ◽  
Scott J Dixon

Nucleotide synthesis is a metabolically demanding process essential for cell division. Several anti-cancer drugs that inhibit nucleotide metabolism induce apoptosis. How inhibition of nucleotide metabolism impacts non-apoptotic cell death is less clear. Here, we report that inhibition of nucleotide metabolism by the p53 pathway is sufficient to suppress the non-apoptotic cell death process of ferroptosis. Mechanistically, stabilization of wild-type p53 and induction of the p53 target gene CDKN1A (p21) leads to decreased expression of the ribonucleotide reductase (RNR) subunits RRM1 and RRM2. RNR is the rate-limiting enzyme of de novo nucleotide synthesis that reduces ribonucleotides to deoxyribonucleotides in a glutathione-dependent manner. Direct inhibition of RNR conserves glutathione which can then be used to limit the accumulation of toxic lipid peroxides, preventing the onset of ferroptosis. These results support a mechanism linking p53-dependent regulation of nucleotide metabolism to non-apoptotic cell death.


Blood ◽  
1994 ◽  
Vol 83 (5) ◽  
pp. 1179-1187 ◽  
Author(s):  
A McGahon ◽  
R Bissonnette ◽  
M Schmitt ◽  
KM Cotter ◽  
DR Green ◽  
...  

Abstract Apoptosis is the major form of cell death associated with the action of chemotherapeutic agents on tumor cells, and therefore the expression of genes that interfere with apoptosis can have important consequences for the efficacy of therapeutic approaches. Here we show that K562, a chronic myelogenous leukemia (CML) cell line expressing the BCR-ABL fusion protein, are resistant to the induction of apoptosis by a number of agents and conditions. Antisense oligodeoxynucleotides corresponding to the translation start of bcr downregulate bcr-abl protein in these cells and render them susceptible to induction of apoptosis by chemotherapeutic agents or serum deprivation. Expression of a temperature sensitive v-Abl protein reverses the effects of the antisense oligonucleotides, such that the cells remain resistant to apoptosis at the permissive temperature. These data indicate that bcr- abl acts as an anti-apoptosis gene in CML cells and suggests that the effect is dependent on the abl kinase activity in this chimeric protein. Inhibition of bcr-abl to render CML cells susceptible to apoptosis can be combined with therapeutic drugs and/or treatment capable of inducing apoptosis to provide an effective strategy for elimination of these cells.


Nutrients ◽  
2020 ◽  
Vol 12 (10) ◽  
pp. 3175
Author(s):  
Mikyoung You ◽  
Young-Hyun Lee ◽  
Hwa-Jin Kim ◽  
Ji Hyun Kook ◽  
Hyeon-A Kim

The rational regulation of programmed cell death by means of autophagy and apoptosis has been considered a potential treatment strategy for cancer. We demonstrated the inhibitory effect of St. John’s Wort (SJW) on growth in the triple-negative breast cancer (TNBC) cell line and xenografted mice and its target mechanism concerning autophagic and apoptotic cell death. SJW ethanol extract (SJWE) inhibited proliferation in a dose-dependent manner. SJWE treatment dramatically increased autophagy flux and apoptosis compared with the control. The autophagy inhibitor, 3-methyladenine (3-MA), reversed the SJWE-induced inhibition of cell proliferation and regulation of autophagy and apoptosis, indicating that SJWE induced apoptosis through prodeath autophagy. Furthermore, SJWE inhibited tumor growth and induced autophagy and apoptosis in the tumor of MDA-MB-231 xenografted athymic nude mice. Our results indicate that SJWE might have great potential as a new anticancer therapy for triple-negative breast cancer by inducing prodeath autophagy and apoptosis.


2008 ◽  
Vol 5 (2) ◽  
pp. 165-171 ◽  
Author(s):  
Sang Chan Kim ◽  
Sook Jahr Park ◽  
Jong Rok Lee ◽  
Jung Cheol Seo ◽  
Chae Ha Yang ◽  
...  

Licorice,Glycyrrhizae radix, is one of the herbal medicines in East Asia that has been commonly used for treating various diseases, including stomach disorders. This study investigated the effect of licorice on arsenite (As)-induced cytotoxicity in H4IIE cells, a rat hepatocyte-derived cell line. Cell viability was significantly diminished in As-treated H4IIE cells in a time and concentration-dependent manner. Furthermore, results from flow cytometric assay and DNA laddering in H4IIE cells showed that As treatment induced apoptotic cell death by activating caspase-3. Licorice (0.1 and 1.0 mg ml−1) treatment significantly inhibited cell death and the activity of caspase-3 in response to As exposure. These results demonstrate that licorice induced a cytoprotective effect against As-induced cell death by inhibition of caspase-3.


2015 ◽  
Vol 84 (1) ◽  
pp. 172-186 ◽  
Author(s):  
Moo-Seung Lee ◽  
Haenaem Kwon ◽  
Eun-Young Lee ◽  
Dong-Jae Kim ◽  
Jong-Hwan Park ◽  
...  

Shiga toxin (Stx)-mediated immune responses, including the production of the proinflammatory cytokines tumor necrosis-α (TNF-α) and interleukin-1β (IL-1β), may exacerbate vascular damage and accelerate lethality. However, the immune signaling pathway activated in response to Stx is not well understood. Here, we demonstrate that enzymatically active Stx, which leads to ribotoxic stress, triggers NLRP3 inflammasome-dependent caspase-1 activation and IL-1β secretion in differentiated macrophage-like THP-1 (D-THP-1) cells. The treatment of cells with a chemical inhibitor of glycosphingolipid biosynthesis, which suppresses the expression of the Stx receptor globotriaosylceramide and subsequent endocytosis of the toxin, substantially blocked activation of the NLRP3 inflammasome and processing of caspase-1 and IL-1β. Processing and release of both caspase-1 and IL-1β were significantly reduced or abolished in Stx-intoxicated D-THP-1 cells in which the expression of NLRP3 or ASC was stably knocked down. Furthermore, Stx mediated the activation of caspases involved in apoptosis in an NLRP3- or ASC-dependent manner. In Stx-intoxicated cells, the NLRP3 inflammasome triggered the activation of caspase-8/3, leading to the initiation of apoptosis, in addition to caspase-1-dependent pyroptotic cell death. Taken together, these results suggest that Stxs trigger the NLRP3 inflammasome pathway to release proinflammatory IL-1β as well as to promote apoptotic cell death.


2005 ◽  
Vol 86 (9) ◽  
pp. 2513-2523 ◽  
Author(s):  
Chia-Che Chang ◽  
Yen-Chuan Ou ◽  
Shue-Ling Raung ◽  
Chun-Jung Chen

Japanese encephalitis virus (JEV), which causes neurological disorders, completes its life cycle and triggers apoptotic cell death in infected cells. Dehydroepiandrosterone (DHEA), an adrenal-derived steroid, has been implicated in protection against neurotoxicity and protection of animals from viral-induced encephalitis, resulting in an increased survival rate of the animals. Currently, the mechanisms underlying the beneficial effects of DHEA against the virus are largely unknown. In this study, DHEA suppression of JEV replication and virus-induced apoptosis in murine neuroblastoma (N18) cells was investigated. It was found that DHEA suppressed JEV-induced cytopathic effects, JEV-induced apoptotic cell death and JEV propagation in a concentration-dependent manner. Antiviral activity was more efficient in cultures treated with DHEA immediately after viral adsorption compared with that in cultures receiving delayed administration after adsorption or transient exposure before adsorption. JEV-induced cytotoxicity was accompanied by the inactivation of extracellular signal-regulated protein kinase (ERK). Inactivation of ERK by JEV infection was reversed by DHEA. When cells were treated with the ERK inhibitor U0126, DHEA lost its antiviral effect. Activation of ERK by anisomycin mimicked the action of DHEA in suppressing JEV-induced cytotoxicity. DHEA-related compounds, such as its sulfate ester (DHEAS) and pregnenolone, were unable to suppress JEV-induced cytotoxicity and ERK inactivation. The hormone-receptor antagonists ICI 182780 and flutamide failed to abrogate the antiviral effect of DHEA. These findings suggest that the antiviral effect of DHEA is not linked directly to the genomic steroid-receptor pathways and suggest that the signalling pathways of ERK play a role in the antiviral action of DHEA.


2006 ◽  
Vol 340 (2) ◽  
pp. 560-566 ◽  
Author(s):  
Yusuke Fujiwara ◽  
Kei Kawada ◽  
Daiki Takano ◽  
Susumu Tanimura ◽  
Kei-ichi Ozaki ◽  
...  

Blood ◽  
2018 ◽  
Vol 132 (Supplement 1) ◽  
pp. 1360-1360
Author(s):  
Jieun Jang ◽  
Ju-In Eom ◽  
Hoi-kyung Jeung ◽  
So-Young Seol ◽  
Haerim Chung ◽  
...  

Abstract Background: Histone methyltransferase (HMTase) G9a regulates the transcription of multiple genes by primarily catalyzing dimethylation of histone H3 lysine 9 (H3K9me2), as well as several non-histone lysine sites. Recently, pharmacological and genetic targeting of the G9a was shown to be efficient in slowing down acute myeloid leukemia (AML) cell proliferation in a mouse model and human AML cell lines thus making this HMTase potential target for epigenetic therapy of AML. Activation of adaptive mechanisms to drug plays a crucial role in drug resistance and relapse by allowing cell survival under stressful conditions. Therefore, inhibition of the adaptive response is considered as a prospective therapeutic strategy. The tolerance mechanism to HMTase regulation in leukemia cell is unclear yet. The PERK-eIF2α phosphorylation pathway is an important arm of the unfolded protein response (UPR), which is induced under conditions of endoplasmic reticulum (ER) stress. Recent previous studies showed that pro-survival ER stress is induced in cancer cells and contributes to development of drug resistance. Methods: We investigated the levels of apoptosis and ER stress by G9a inhibitor BIX-01294 in leukemia cell lines. U937, cytarabine-resistant U937 (U937/AR) and KG1 were used. U937/AR cell line was established in our laboratory by exposing parental U937 cells to stepwise increasing concentrations of cytarabine. Results: We initially examined the expression of G9a in leukemia cell lines and the primary AML cells obtained from a patient at the different time point. In U937/AR cells and primary AML cells obtained at relapse, G9a expression was increased compare to that in U937 cells and primary AML cells obtained at diagnosis, respectively. G9a expression was also increased in KG1 cells. In both of U937 and U937/AR, apoptotic cell death was induced by BIX-01294 in a dose-dependent manner. In contrast, apoptotic cell death was minimal in KG1 cells which are enriched in cells expressing a leukemia stem cell phenotype (CD34+CD38-). To address the activation of ER stress response by BIX-01294 in leukemia cells, we examined the effect of BIX-01294 treatment on PERK and eIF2α protein expression and phosphorylation levels. We found that treatment of U937, U937/AR, KG1 cells with 3μM of BIX-01294 for 24h caused an upregulation of phosphorylated PERK and eIF2α. The upregulation of PERK phosphorylation was associated with a decrease in PERK protein levels after treatment. To further address the role of the PERK-eIF2α phosphorylation in BIX-01294 sensitivity, we examined whether PERK inhibition using small interfering RNA (siRNA) or specific inhibitor could sensitize cells to BIX-01294-mediated death. The siRNA against PERK effectively inhibited BIX-01294-mediated phosphorylation of PERK and eIF2α in U937 and U937/AR cells. The addition of PERK siRNA led to a significant increase in the extent of BIX-01294-induced apoptotic cell death in U937 (P = 0.0003) and U937/AR (P < 0.0001) as compared with that of BIX-01294 treatment alone. PERK inhibitor GSK260641 significantly increased BIX-01294-induced apoptotic cell death in U937 (P < 0.0001) and U937/AR (P = 0.006) cells. To our surprise, addition of PERK siRNA or GSK260641 increased the sensitivity of KG1 cells to BIX-01294-mediated death in a dose-dependent manner (P = 0.0003 for siRNA, P = 0.0053 for GSK260641). Conclusion: These data demonstrated that PERK-eIF2α activation has a pro-survival function to G9a inhibitor in leukemia cells and mediates resistance of AML stem cells to G9a inhibitor treatment. The PERK-eIF2α phosphorylation arm may represent a suitable target for combating resistance to G9a inhibitor in AML. The mechanisms underlying the increased sensitivity of AML cells with PERK inhibition to G9a inhibitor are unclear at present and are needed to define in further studies. Disclosures No relevant conflicts of interest to declare.


2001 ◽  
Vol 71 (3) ◽  
pp. 69-78
Author(s):  
Mihaela Buleandra ◽  
Zenovia Moldovan ◽  
Irinel Adriana Badea ◽  
Iulia Gabriela David ◽  
Dana Elena Popa ◽  
...  

Millefolii herba is an available product on the Romanian market as mixture of stems, leaves and flowers of Achillea millefolium L. There were established its volatile compounds profile, total polyphenolic content (TPC), antioxidant capacity and effects on HCT 116 cell viability and programmed cell death. The infusion, hydroalcoholic extract and hydrodistillated essential oil were studied. A comparative analysis using static headspace (HS) and hydro-distillation (HD) GC/MS of the volatile components from Millefolii herba was realized: the essential oil contains chamazulene as the principal component (37.1%), while 1,8-cineole (46.8%) is the main constituent of headspace volatiles. The highest antioxidant capacity was found in essential oil, compared with hydroalcoholic extract, infusion and ascorbic acid. Yarrow hydroalcoholic extract reduced the HCT 116 cell viability and induced the apoptotic cell death in a dose and time dependent manner.


Sign in / Sign up

Export Citation Format

Share Document