scholarly journals 3D Tissue-Engineered Bone Marrow Cultures Induce Drug Resistance, De-Differentiation and Cytokine Expression Changes in Multiple Myeloma

Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. 2069-2069
Author(s):  
Pilar De La Puente ◽  
Barbara Muz ◽  
Feda Azab ◽  
Justin King ◽  
Ravi Vij ◽  
...  

Abstract INTRODUCTION: Multiple myeloma (MM) is a hematological malignancy that remains incurable because most patients will eventually relapse or become refractory to the treatments. Although the treatments have improved, the major problem in MM is the resistance to therapy. The discrepancy between in vitro efficacy and clinical outcomes can be attributed to several limitations of the classic tissue culture drug screening models including: (1) most of the in vitro models use MM cell line cultures and neglect the vital role of the bone marrow (BM) microenvironment in MM progression, which promotes drug resistance. (2) The BM niche is a three-dimensional (3D) structure with a gradient of both oxygen and drug concentration as a function of distance from blood vessels. The classic two-dimensional (2D) in vitro tissue culture system cannot mimic oxygen and drug gradients in culture wells, making all cells highly oxygenated. Therefore, 2D cultures cannot accurately predict drug sensitivity in different parts of the BM niche due to lack of accurate effects throughout various tissue depths. The goal of this study is to develop an in vitro model that will allow for better evaluation of interactions of MM cells and their microenvironment in the BM niche in a 3D system and how these interactions may affect MM progression and drug resistance. METHODS: The 3D tissue-engineered bone marrow (3DTEBM)was formed through calcium cross-linking of BM supernatants from MM patients. MM cell lines (MM1s, H929 and RPMI) and BM microenvironment (BMM) components, including MM-derived BM stromal cells, HUVECs, and ECM component (fibronectin), were incorporated in 3DTEBM or 2D cultures. We tested by flow cytometry the growth of MM cell lines with and without BMM in 2D vs 3DTEBM cultures at 3 and 7 days. The effect of 3DTEBM and 2D cultures with and without BMM on cytokine expression was determined at day 3 by human cytokine antibody arrays. In addition, the effect of 3DTEBM and 2D cultures with and without BMM on CD markers expression was tested at day 3 by flow cytometry. Finally, drug uptake and hypoxia levels by MM cells in 3DTEBM of different depth of tissue and 2D cultures was determined using flow cytometry and immunohistochemistry, respectively. Then, drug resistance of MM cell lines with and without BMM in 2D vs 3DTEBM cultures after 24h drug treatment were analyzed by flow cytometry. RESULTS: We found that MM cells doubled within 3 days in 2D and 3DTEBM cultures with and without BMM, compared to day 0. In contrast, while in the 3DTEBM induced about 3-5-fold increase in 7 and 14 days, the 2D cultures showed lower growth. In addition, 3DTEBM expressed more cytokines than 2D media in absence of cells, and incorporation of MM cells and BMM induced higher cytokine expression in 3DTEBM than in 2D cultures of SDF-1, IL1-α, TNF-α, TNF-β, MIP-1-δ, PARC, angiopoietin, eotaxin 3 and osteoprotegin. MM cells expressed loss of the plasma cells markers (CD38, CD56, and CD138), mildly reduced or no changes of B cells markers (CD19, CD20 and CD22), and increased of the stem cell marker CD34 in 3DTEBM compared to 2D without BMM. Finally, we found that MM cells in 3DTEBM exhibited 2-fold less drug uptake than MM cells grown in 2D cultures, and drug uptake of MM cells grown in the 3DTEBM was inversely correlated with the depth of the tissue; with increasing tissue depth the drug uptake by MM cells decreased. Accordingly, MM cells in the 3DTEBM exhibited higher hypoxia levels (MFI of PIM) compared to MM cells grown in 2D cultures, and anti-HIF-1α staining revealed that the cells at the lower area were more hypoxic that the cells at the upper area of the 3DTEBM. Therefore, we found that 3DTEBM cultures induced drug resistance in MM cells; for the same drug concentration about 50 and 35% of the MM cells were killed in 2D, and about 15 and 5% of the cells were killed in 3DTEBM without and with BMM, respectively. CONCLUSIONS: Our results suggest that 3DTEBM cultures promoted tumor growth, enhanced cytokine expression, and induced de-differentiation of MM cells, and that a stem-cell-like phenotype might be developing. The 3DTEBM recreated hypoxia and drug gradients by reproducing tissue-specific structural features, so the 3DTEBM cultures induced drug resistance in MM cells more accurately than 2D. Therefore, the 3DTEBM is a promising model for the study of multiple myeloma biology, for in vitro examination of anti-myeloma drugs, tumor microenvironment and interactions between myeloma cells and the BMM. Disclosures No relevant conflicts of interest to declare.

Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 1674-1674 ◽  
Author(s):  
Nicholas Burwick ◽  
Anne-Sophie Moreau ◽  
Xiaoying Jia ◽  
Xavier Leleu ◽  
Judith Runnels ◽  
...  

Abstract BACKGROUND: Multiple myeloma (MM) is a plasma cell malignancy that depends on interactions with the bone marrow (BM) microenvironment for growth and survival. In turn, adhesion of MM cells to the BM stroma provides a mechanism of resistance from standard chemotherapeutic agents. Recently, our lab has shown that by disrupting this adhesion using a selective CXCR4 inhibitor named AMD3100, MM cells are more sensitive to the proteasome inhibitor Bortezomib (Ghobrial lab, unpublished data). CXCR4 has been a particularly attractive target because its ligand SDF-1 is known to induce p42/44 MAPK, AKT, and the down-stream anti-apoptotic protein bad in MM cells, leading to increased MM growth and survival. Until recently, CXCR4 was thought to be a canonical receptor for the SDF-1 ligand. However, a second chemokine receptor for SDF-1 was subsequently discovered and named CXCR7. CXCR7 is a novel chemokine receptor that is important in cell adhesion, growth and survival in several tumor types. However, the role of CXCR7 in multiple myeloma (MM) has yet to be explored. Furthermore, the ability of SDF-1 ligand to regulate MM function via CXCR7 has not been studied. METHODS: The MM cell lines (U266, MM1.S, RPMI, OPM2, OPM1) were used. After informed consent was obtained, primary bone marrow samples from MM patients were collected. CD138 positive mononuclear cells were isolated by microbead selection. The expression of CXCR7 on MM cell lines and patient samples was confirmed using flow cytometry and RT-PCR analysis. For functional in vitro and ex-vivo assays, the CXCR7 selective antagonist 733 was used (ChemoCentryx Inc., Mountain View, CA). RESULTS: Here we show that CXCR7 was expressed on all tested MM cell lines and primary patient samples as demonstrated by flow cytometry and RT-PCR. Furthermore, CXCR7 was found to regulate SDF-1 induced MM cell adhesion, as demonstrated by in vitro assays using a small molecule compound specific for CXCR7 (733). The CXCR7 antagonist showed significant inhibition of adhesion of MM cell lines and patient samples to fibronectin, endothelial cells and stromal cells, with 50% reduction of adhesion at 5nM of the CXCR7 inhibitor, and with similar activity compared to 20uM of AMD3100 (CXCR4 inhibitor). However, unlike CXCR4, CXCR7 did not effect trans-well migration to SDF-1 chemokine. Interestingly, both receptors were found to be important for trans-endothelial migration of MM cells. Moreover, pre-treatment with 733 reduced homing of MM cells to the BM niche in vivo. Previous studies have failed to show signaling in response to CXCR7 in many tumor types. Here, we demonstrate that treatment with 733 inhibited SDF-1 induced pERK and pAKT, ribosomal pS6Kinase, pGSK3, pSTAT3, pFAK and pPAK signaling pathways, confirming a role for CXCR7 in facilitating SDF-1 signaling. This effect was further confirmed using immunofluorescence. To investigate whether CXCR7 and CXCR4 interact directly, we examined the effect of 733 and AMD3100 on CXCR4 expression and found that AMD3100 significantly inhibited CXCR4 expression, while 733 had no effect on CXCR4 expression, even in the presence of SDF-1. The CXCR7 inhibitor had no effect on the survival of MM cells using MTT and flow cytometry analysis, while high doses of 733 (1uM) had modest inhibition of proliferation. Interestingly, 733 prevented the growth advantage induced by 30nM SDF-1 at 24 hrs. CONCLUSION: Together, these results demonstrate the importance of CXCR7 in regulating MM adhesion and homing, and highlight the differential effects of CXCR4 and CXCR7 in regulating SDF-1 signaling in MM, thus providing a rationale for targeting the SDF-1/CXCR7 axis in MM.


Blood ◽  
2006 ◽  
Vol 108 (12) ◽  
pp. 3881-3889 ◽  
Author(s):  
Joel G. Turner ◽  
Jana L. Gump ◽  
Chunchun Zhang ◽  
James M. Cook ◽  
Douglas Marchion ◽  
...  

AbstractWe investigated the role of the breast cancer resistance protein (BCRP/ABCG2) in drug resistance in multiple myeloma (MM). Human MM cell lines, and MM patient plasma cells isolated from bone marrow, were evaluated for ABCG2 mRNA expression by quantitative polymerase chain reaction (PCR) and ABCG2 protein, by Western blot analysis, immunofluorescence microscopy, and flow cytometry. ABCG2 function was determined by measuring topotecan and doxorubicin efflux using flow cytometry, in the presence and absence of the specific ABCG2 inhibitor, tryprostatin A. The methylation of the ABCG2 promoter was determined using bisulfite sequencing. We found that ABCG2 expression in myeloma cell lines increased after exposure to topotecan and doxorubicin, and was greater in logphase cells when compared with quiescent cells. Myeloma patients treated with topotecan had an increase in ABCG2 mRNA and protein expression after treatment with topotecan, and at relapse. Expression of ABCG2 is regulated, at least in part, by promoter methylation both in cell lines and in patient plasma cells. Demethylation of the promoter increased ABCG2 mRNA and protein expression. These findings suggest that ABCG2 is expressed and functional in human myeloma cells, regulated by promoter methylation, affected by cell density, up-regulated in response to chemotherapy, and may contribute to intrinsic drug resistance.


Blood ◽  
2005 ◽  
Vol 106 (11) ◽  
pp. 1593-1593
Author(s):  
Tanyel Kiziltepe ◽  
Kenji Ishitsuka ◽  
Teru Hideshima ◽  
Noopur Raje ◽  
Norihiko Shiraishi ◽  
...  

Abstract Multiple myeloma (MM) is currently an incurable hematological malignancy. A major reason for the failure of currently existing therapies is the chemotherapeutic resistance acquired by the MM cells upon treatment. Overexpression of glutathione S-transferases (GST) has been shown as one possible mechanism of anti-cancer drug resistance in a broad spectrum of tumor cells. JS-K (O2-(2,4-Dinitrophenyl) 1-[(4-ethoxycarbonyl)piperazin-1-yl]diazen-1-ium-1,2-diolate) belongs to a class of pro-drugs which are designed to release nitric oxide (NO) on reaction with GST. JS-K can possibly turn GST overexpression to the tumor’s disadvantage by (1) consuming intracellular GSH and preventing drug inactivation; and (2) by exposing tumor cells to high intracellular concentrations of NO. JS-K has potent in vitro and in vivo anti-leukemic activity. The purpose of the present study is to examine the biological effects of JS-K on human MM cells. We demonstrate that JS-K has significant in vitro cytotoxicity on MM cell lines, with an IC50 of 0.3-2 mM at 48 hours. JS-K also induces cytotoxicity on cell lines that are resistant to conventional chemotherapy (i.e., MM1R, RPMI-Dox40, RPMI-LR5, RPMI-MR20). Importantly, no cytotoxic effects of JS-K were detected on peripheral blood mononuclear cells (PBMNC) obtained from healthy volunteers at these doses. Moreover, JS-K could overcome the survival and growth advantages conferred by interleukin-6 (IL-6) and insulin-like growth factor-1 (IGF-1), or by adherence of MM cells to bone marrow stromal cells (BMSC). JS-K caused a transient G2/M arrest followed by apoptosis, as determined by flow cytometric analysis using PI, Annexin V and Apo2.7 staining. JS-K-induced apoptosis was associated with caspase 8, 7, 9 and 3 activation. Interestingly, Fas was upregulated by JS-K, suggesting the involvement of death receptor pathway in induction of apoptosis. JS-K also triggered Mcl-1 cleavage and Bcl-2 phosphorylation, suggesting the involvement of mitochondrial pathway. In addition, apoptosis inducing factor (AIF), endonuclease G (EndoG) and cytochrome c were released into the cytosol during apoptosis. Taken together, these findings suggest the involvement of both intrinsic and extrinsic apoptotic pathways in JS-K-induced apoptosis in MM cells. In summary, our studies demonstrate that JS-K induces apoptosis and overcomes in vitro drug resistance in MM cells. Therefore, JS-K is a novel compound which carries significant potential to be included in the repertoire of existing treatment modalities for MM. Ongoing studies are delineating the mechanism of action of JS-K to provide the preclinical rationale for combination therapies to overcome drug resistance and improve patient outcome.


Blood ◽  
2005 ◽  
Vol 106 (11) ◽  
pp. 1589-1589
Author(s):  
Michael Kline ◽  
Terry Kimlinger ◽  
Michael Timm ◽  
Jessica Haug ◽  
John A. Lust ◽  
...  

Abstract Background: Multiple myeloma (MM) is a plasma cell proliferative disorder that is incurable with the currently available therapeutics. New therapies based on better understanding of the disease biology are urgently needed. MM is characterized by accumulation of malignant plasma cells predominantly in the bone marrow. These plasma cells exhibit a relatively low proliferative rate as well as a low rate of apoptosis. Elevated expression of the anti-apoptotic Bcl-2 family members has been reported in MM cell lines as well as in primary patient samples and may be correlated with disease stage as well as resistance to therapy. ABT-737 (Abbott Laboratories, Abbott Park, IL) is a small-molecule inhibitor designed to specifically inhibit anti-apoptotic proteins of the Bcl-2 family and binds with high affinity to Bcl-XL, Bcl-2, and Bcl-w. ABT-737 exhibits toxicity in human tumor cell lines, malignant primary cells, and mouse tumor models. We have examined the in vitro activity of this compound in the context of MM to develop a rationale for future clinical evaluation. Methods: MM cell lines were cultured in RPMI 1640 containing 10% fetal bovine serum supplemented with L-Glutamine, penicillin, and streptomycin. The KAS-6/1 cell line was also supplemented with 1 ng/ml IL-6. Cytotoxicity of ABT-737 was measured using the MTT viability assay. Apoptosis was measured using flow cytometry upon cell staining with Annexin V-FITC and propidium iodide (PI). Flow cytometry was also used to measure BAX: Bcl-2 ratios after ABT-737 treatment and cell permeabilization with FIX & PERM (Caltag Laboratories, Burlingame, CA) Results: ABT-737 exhibited cytotoxicity in several MM cell lines including RPMI 8226, KAS-6/1, OPM-1, OPM-2, and U266 with an LC50 of 5-10μM. The drug also had significant activity against MM cell lines resistant to conventional agents such as melphalan (LR5) and dexamethasone (MM1.R) with similar LC50 (5-10 μM), as well as against doxorubicin resistant cells (Dox40), albeit at higher doses. Furthermore, ABT-737 retained activity in culture conditions reflective of the permissive tumor microenvironment, namely in the presence of VEGF, IL-6, or in co-culture with marrow-derived stromal cells. ABT-737 was also cytotoxic to freshly isolated primary patient MM cells. Time and dose dependent induction of apoptosis was confirmed using Annexin V/PI staining of the MM cell line RPMI 8226. Flow cytometry analysis of cells treated with ABT-737 demonstrated a time and dose dependent increase in pro-apoptotic BAX protein expression without significant change in the Bcl-XL or Bcl-2 expression. Ongoing studies are examining the parameters and mechanisms of ABT-737 cytotoxicity to MM cells in more detail. Conclusion: ABT-737 has significant activity against MM cell lines and patient derived primary MM cells in vitro. It is able to overcome resistance to conventional anti-myeloma agents suggesting a different mechanism of toxicity that may replace or supplement these therapies. Additionally, it appears to be able to overcome resistance offered by elements of the tumor microenvironment. The results of these studies will form the framework for future clinical evaluation of this agent in the clinical setting.


Blood ◽  
2015 ◽  
Vol 126 (23) ◽  
pp. 1772-1772 ◽  
Author(s):  
Jahangir Abdi ◽  
Yijun Yang ◽  
Patrick Meyer-Erlach ◽  
Hong Chang

Abstract INTRODUCTION It is not yet fully understood how bone marrow microenvironment components especially bone marrow stromal cells (BMSCs) induce drug resistance in multiple myeloma (MM). This form of drug resistance has been suggested to pave the way for intrinsic (de novo) resistance to therapy in early stages of the disease and contribute to acquired drug resistance in the course of treatment. Hence, deciphering the molecular mechanisms involved in induction of above resistance will help identify potential therapeutic targets in MM combined treatments. Our previous work showed that BMSCs (normal and MM patient-derived) induced resistance to bortezomib (BTZ) compared with MM cells in the absence of stroma. This resistance was associated with modulation of a transcriptome in MM cells, including prominent upregulation of oncogenes c-FOS, BIRC5 (survivin) and CCND1. However; whether these oncogenes mediate BTZ resistance in the context of BMSCs through interaction with miRNAs is not known. METHODS Human myeloma cell lines, 8226, U266 and MM.1s, were co-cultured with MM patient-derived BMSCs or an immortalized normal human line (HS-5) in the presence of 5nM BTZ for 24 h. MM cell monocultures treated with 5nM BTZ were used as controls. Co-cultures were then applied to magnetic cell separation (EasySep, Stem Cell Technologies) to isolate MM cells for downstream analyses (western blotting and qPCR). Total RNA including miRNAs was isolated from MM cell pellets (QIAGEN miRNeasy kit), cDNAs were synthesized (QIAGEN miScript RT II kit) and applied to miScript miRNA PCR Array (SABioscience, MIHS-114ZA). After normalization of all extracted Ct values to 5 different housekeeping genes, fold changes in miRNA expression were analyzed in co-cultures compared to MM cell monocultures using the 2-ΔΔCt algorithm. Moreover, survivin gene was silenced in MM cells using Ambion® Silencer® Select siRNA and Lipofectamine RNAiMAX transfection reagent. Survivin-silenced cells were then seeded on BMSCs and exposed to BTZ. Percent apoptosis of gated CD138+ MM cells was determined using FACS. For our overexpression and 3'UTR reporter experiments, we transiently transfected MM cells with pre-miR-101-3p, scrambled miRNA or pEZX-3'UTR constructs using Endofectin reagent (all from GeneCopoeia). RESULTS BMSCs upregulated survivin gene / protein (a member of inhibitors of apoptosis family) and modulated an array of miRNAs in MM cells compared to MM cells in the absence of stroma. The more noticeably downregulated miRNAs were hsa-miR-101-3p, hsa-miR-29b-3p, hsa-miR-32-5p, hsa-miR-16-5p (4-30 fold) and highly upregulated ones included hsa-miR-221-3p, hsa-miR-409-3p, hsa-miR-193a-5p, hsa-miR-125a-5p (80-330 fold). We focused on miRNA-101-3p as it showed the highest level of downregulation (30 fold) and has been shown to function as an important tumor suppressor in other malignancies. Real time RT-PCR confirmed downregulation of miRNA-101-3p. Moreover, microRNA Data Integration Portal (mirDIP) identified miRNA-101-3p as a putative target for survivin and Luciferase activity assays confirmed binding of miRNA-101-3p to 3'UTR of survivin. In addition, overexpression of miRNA-101-3p downregulated survivin and sensitized MM cells to BTZ-induced apoptosis. Furthermore, silencing of survivin upregulated miRNA-101-3p and increased BTZ-induced apoptosis in MM cell lines both in the absence of BMSCs (Apoptosis range in BTZ-treated conditions: 57.65% ± 4.91 and 28.66% ± 0.78 for si-survivin and scrambled control, respectively, p<0.05) and in the presence of BMSCs (41.23% ± 1.43 and 14.8% ± 0.66, for si-survivin and scrambled control, respectively, p<0.05). CONCLUSION Our results indicate that BMSCs downregulated miRNA-101-3p and upregulated survivin in MM cells compared to MM cells in the absence of stroma. Silencing of survivin or overexpression of miRNA-101-3p sensitized MM cells to BTZ in the presence of BMSCs. These findings suggest that miRNA-101-3p mediates BTZ response of MM cells in the presence of BMSCs by targeting survivin and disclose a role of survivin-miRNA-101-3p axis in regulation of BMSCs-induced BTZ resistance in MM cells, thus provide a rationale to further investigate the anti-myeloma activity of miRNA-101-3p in combination with BTZ as a potential novel therapeutic strategy in MM. Disclosures No relevant conflicts of interest to declare.


Blood ◽  
2020 ◽  
Vol 136 (Supplement 1) ◽  
pp. 16-17
Author(s):  
Filip Garbicz ◽  
Anna Szumera-Ciećkiewicz ◽  
Joanna Barankiewicz ◽  
Dorota Komar ◽  
Michał Pawlak ◽  
...  

The development and progression of multiple myeloma (MM) depend on the formation and perpetual evolution of an immunosuppressive and hypervascular bone marrow microenvironment. MM undergoes an angiogenic switch during its early progression stages and initiates the secretion of proangiogenic proteins, such as VEGFA and Galectin-1. Following their engagement with the VEGF receptor 2 on the surface of the endothelium, quiescent endothelial cells (ECs) rapidly switch to an activated state, thus gaining the ability to create sprouts, migrate and proliferate. However, chronic angiogenic stimulation results in the formation of a dense and leaky network of pathological vessels, which in the case of MM also serves as a major source of prosurvival paracrine signals. Since PIM kinases are known modulators of cytokine signaling, owing to their ability to activate NFκB, JAK/STAT and mTOR pathways, we analyzed the expression pattern of PIM1, PIM2 and PIM3 in multiple myeloma bone marrow samples using immunohistochemistry. We found that both MM cells as well as myeloma-associated ECs exhibit a significantly higher PIM3 expression than their normal bone marrow counterparts. Since the role of PIM kinases in the vascular compartment of the tumor microenvironment is currently unknown, we decided to explore the proangiogenic functions of PIM kinases using in vitro MM and EC model cell lines. 3 MM cell lines (RPMI 8226, MM1.s, U266), immortalized bone marrow ECs (HBMEC-60) and human umbilical vein ECs (HUVECs) were used for the experiments. Primary MM cells were obtained from MACS-separated bone marrow aspirates. Chemical blockade of PIM kinase activity was achieved using the pan-PIM inhibitor SEL24/MEN1703. The compound decreased the viability of MM cell lines with IC50 in the submicromolar range, induced G2 cell cycle arrest and apoptosis. Moreover, SEL24/MEN1703 induced apoptosis in primary MM cells, even when cocultured with the CD138- bone marrow fraction. PIM inhibitor treatment inhibited the phosphorylation of mTOR substrates S6 and 4EBP1, STAT3/5, as well as RelA/p65. Consequently, we observed markedly decreased VEGFA and Gal-1 levels in SEL24/MEN1703-treated MM cells. When cultured together, separated by a permeable transwell membrane, both RPMI 8226 cells, as well as ECs, exhibited a 2-fold increase in proliferation rate. This effect was completely blocked by a 2-day treatment with a PIM inhibitor. Exposure of ECs to recombinant VEGFA (10ng/ul) or MM supernatant resulted in an increase in VEGFR2 Y1175 phosphorylation level and induction of PIM3 expression. Increased MYC activity is a hallmark of VEGF-dependent endothelial activation and is necessary to support the creation of new vessels. Since the PIM3 promoter region contains putative MYC-binding sites (E-boxes), we checked if PIM3 induction depends on MYC in ECs. MYC silencing using siRNA resulted in an 88% lower PIM3 expression than the non-targeting siRNA. One of MYC's main tasks during angiogenesis is the stimulation of cellular ATP synthesis to meet the energy demands created by the dynamic remodeling of the actin cytoskeleton. Surprisingly, PIM inhibition decreased the total ATP content in ECs by 25%, thus disrupting the energetic homeostasis, as evidenced by a 9.6-fold increase in phosphorylated AMPK T172 levels. Furthermore, SEL24/MEN1703-treated ECs were depleted of higher-order actin structures necessary for efficient angiogenesis, such as actin stress fibers, membrane ruffles and lamellipodia. In consequence, PIM kinase inhibition decreased proliferation, migration and formation of new vessel-like structures in Matrigel by ECs. Collectively, our data demonstrate that PIM inhibition induces MM cell death and abolishes important tumor cell-ECs interactions. In addition, we show that PIM3 is overexpressed in MM tumor endothelial cells and PIM inhibition disrupts the activation state in in vitro cultured ECs. Hence, targeting PIM kinases may represent an efficient approach to induce tumor cell death and to block angiogenesis in MM. RNA-sequencing studies on the downstream effectors of PIM3 are currently ongoing in order to unravel the molecular mechanism behind the observed effects. Figure Disclosures Brzózka: Ryvu Therapeutics: Current Employment. Rzymski:Ryvu Therapeutics: Current Employment. Tomirotti:Menarini Ricerche: Current Employment. Lech-Marańda:Roche, Novartis, Takeda, Janssen-Cilag, Amgen, Gilead, AbbVie, Sanofi: Consultancy; Roche, Amgen, Gilead: Speakers Bureau. Juszczynski:Ryvu Therapeutics: Other: member of advisory board.


Blood ◽  
2018 ◽  
Vol 132 (Supplement 1) ◽  
pp. 3153-3153
Author(s):  
Christopher Richard Marlein ◽  
Rebecca H Horton ◽  
Rachel E Piddock ◽  
Jayna J Mistry ◽  
Charlotte Hellmich ◽  
...  

Abstract Background Multiple myeloma (MM) is malignancy highly reliant on its microenvironment. In this study, we investigated whether mitochondrial transfer occurred between bone marrow stromal cells (BMSC) and malignant plasma cells. We then used our observations as a platform to investigate the mechanisms controlling pro-tumoral mitochondrial transfer with a view to identifying druggable targets. Methods Primary MM cells were obtained from patients' bone marrow after informed consent and under approval from the United Kingdom Health Research Authority. Animal experiments were conducted under approvals from the UK Home Office and the University of East Anglia Animal Welfare and Ethics Review Board. Primary BMSC were also obtained from patient bone marrow, using adherence and characterised using flow cytometry. Mitochondrial transfer was assessed using two methods; a MitoTracker Green based staining of the BMSC (in-vitro), rLV.EF1.AcGFP-Mem9 labelling of the MM plasma membrane with MitoTracker CMXRos staining of the BMSC (in-vitro) and an in vivo MM NSG xenograft model. CD38 expression on MM cells was tested after ATRA treatment, using RT-qPCR and flow cytometry. Mitochondrial transfer levels were assessed when CD38 was over expressed using ATRA or inhibited using lentivirus targeted shRNA. Results We report that mitochondria are transferred from BMSC to MM cells. First, we cultured MM cells on MitoTracker Green labelled BMSC and found increased MitoTracker Green fluorescence in the MM cells. We then transduced MM with rLV.EF1.AcGFP-Mem9 lentivirus and stained BMSC with MitoTracker CMXRos and used wide field microscopy to show MM derived tunnelling nanotubles (TNT) formed between MM cells and BMSC, with red mitochondria located within the GFP-tagged TNT. Next, we engrafted the MM cell lines MM1S and U266 into NSG mouse, after isolation we detected the presence of mouse mitochondrial DNA in the purified MM population. Together, these data show that mitochondria are transferred from BMSC to MM cells. We next analysed OXPHOS levels in MM cells grown on BMSC, using the seahorse extracellular flux assay. We found that the MM cells had increased levels of OXPHOS after culture with BMSC, which was also the case for MM cell lines analysed after isolation from NSG mice, showing the micro-environment of MM can alter the metabolism of the malignant cell. To examine whether the mitochondrial transfer process was controlled by CD38, we knocked down CD38 in MM cells using lentiviral targeted shRNA. We found reduced levels of mitochondrial transfer in CD38KD MM cells, with a consequent reduction of OXPHOS in the malignant cells. Finally, as ATRA has previously been shown to increase CD38 expression in AML, we next quantified CD38 mRNA and surface glycoprotein level on malignant plasma cells with and without ATRA treatment. We found ATRA increased CD38 expression at the mRNA and protein levels and this resulted in an increase in mitochondrial transfer from BMSC to MM cells. Conclusion Here we show that CD38 mediated mitochondrial transfer in the MM micro-environment forms part of the malignant phenotype of multiple myeloma. This finding develops our understanding of the mechanisms which underpin the efficacy of CD38 directed therapy in MM. Disclosures No relevant conflicts of interest to declare.


Blood ◽  
2015 ◽  
Vol 126 (23) ◽  
pp. 2978-2978
Author(s):  
Pilar De La Puente ◽  
Barbara Muz ◽  
Feda Azab ◽  
Micah John Luderer ◽  
Jack L. Arbiser ◽  
...  

Abstract Introduction: Despite recent progress in novel and targeted therapies, multiple myeloma (MM) remains a therapeutically challenging incurable disease. The regulation of important cellular processes and its link to cancer presented Src as an attractive target for MM. Src is a non-receptor protein tyrosine kinase which regulates multiple fundamental cellular processes including cell growth, migration, survival and differentiation. Activated Src in cancer lead to studies with Src as a target for anti-cancer drugs, and numerous Src inhibitors have become available to test the importance of Src in tumor initiation and progression. In MM, it has been described that in cell lines and MM patient-derived tumors, c-Src is constitutively activated, which plays an important role in drug resistance mechanisms. Tris dibenzylideneacetone dipalladium (Tris DBA), a small-molecule palladium complex, was shown to reduce Src/NMT-1 complex in melanoma cells, as well as inhibit downstream signaling including mitogen-activated protein kinase (MAPK kinase) and phosphoinositol-3-kinase (PI3K). We suggest a novel strategy to improve the treatment of MM and overcome the drug resistance for the current therapeutic agents by specific inhibition of Src in MM cells by an organopalladium compound, Tris DBA. Methods: Tris DBA was prepared by Dr. Arbiser. MM cell lines (MM.1S, MM.1R, H929, RPMI-8826, and OPM2) and PBMCs were cultured with Tris DBA (0-10 µM) for 24h. MM cells were analyzed for cell proliferation by MTT assay; cell cycle by DNA staining with PI and analyzed by flow cytometry; apoptosis was analyzed by Annexin V/PI staining and analyzed by flow cytometry; and cell signaling associated with proliferation, cell cycle, and apoptosis was analyzed by western blotting. In addition, cell proliferation assay of Tris DBA with or without combination of proteasome inhibitors (PIs) bortezomib or carfilzomib for 24h was analyzed on the proliferation of MM cells in normoxic or hypoxic conditions. Moreover, we tested the effect of combination treatment on cell cycle and apoptosis signaling under normoxic conditions. We then evaluated the effect of Tris DBA on HIF1α expression, migration and drug resistance under normoxic or hypoxic conditions. Results: The Src inhibitor Tris DBA reduced the proliferation of MM cell lines with an IC50 of about 1.5 - 3 µM after 24h treatment as a single agent, while none of the normal PBMC controls showed effect on their proliferation in the same dose range. These results were consistent with the decreased expression of proliferation signaling proteins from MAPK pathways (pERK), as well as PI3K (pS6R). Src inhibition led to the induction of a sub-G1 peak, which indicated accumulating apoptotic cells shown by DNA staining with PI. Apoptosis was then analyzed by Annexin/PI and confirmed by cleavage of caspase-3 and PARP. We found that Tris DBA synergized with bortezomib and carfilzomib by inhibiting proliferation of MM cells and reducing cell cycle protein signaling more than either of the drugs alone. Moreover, the Tris DBA/Bortezomib or Tris DBA/Carfilzomib combination therapies significantly increased apoptosis by caspase-3 cleavage more than treatment with either proteasome inhibitor individually. Tris DBA inhibited HIF1α expression in both normoxic and hypoxic conditions. HIF1α is an important target for hypoxia-driven drug resistance. Our studies confirmed hypoxia promoted faster chemotaxis of MM cells towards the chemo-attractants found in stromal cell conditioned media, and that Tris DBA treatment could overcome this hypoxia-induced effect. In addition, the development of hypoxia-induced drug resistance to individual bortezomib or carfilzomib treatment was overcome with combination treatment of Tris DBA under hypoxic conditions. Conclusions: Tris DBA reduces proliferation and induces G1 arrest and apoptosis in MM cells. Tris DBA synergized with PIs reducing proliferation and cell cycle signaling, as well as increasing apoptosis more than each drug alone. Tris DBA overcame hypoxia-induced effects such as enhanced chemotaxis or drug resistance to PIs by inhibition of HIF1α expression. Moreover, we found that Tris DBA is an effective anti-myeloma agent alone or in combination with other targeted drugs and that it reverses hypoxia-induced drug resistance in myeloma. These results suggest the use of Tris DBA as a new therapeutic agent in relapsed refractory myeloma. Disclosures Arbiser: ABBY Therapeutics: Other: Jack L Arbiser is listed as inventor on a US Patent for imipramine blue. He is cofounder of ABBY Therapeutics, which has licensed imipramine blue from Emory University.. Azab:Verastem: Research Funding; Targeted Therapeutics LLC: Other: Founder and owner ; Selexys: Research Funding; Karyopharm: Research Funding; Cell Works: Research Funding.


Blood ◽  
2018 ◽  
Vol 132 (Supplement 1) ◽  
pp. 4504-4504
Author(s):  
Quanhong Sun ◽  
Peng Zhang ◽  
Juraj Adamik ◽  
Konstantinos Lontos ◽  
Valentina Marchica ◽  
...  

Abstract Multiple myeloma (MM) is the most frequent cancer to involve the skeleton and remains incurable for most patients, thus novel therapies are needed. MM bone disease is characterized by osteolytic lesions that contribute significantly to patient morbidity and mortality. We showed that TBK1 signaling is a novel pathway that increases osteoclast (OCL) formation in Paget's disease, an inflammatory bone disease. Therefore, we hypothesized that TBK1 plays a similar role in MM induction of OCL. We found that MM conditioned media (MM-CM) dose-dependently increased bone marrow monocyte (BMM) expression of activated TBK1 protein and enhanced RANKL-driven OCL formation. TBK1 knockdown by shRNA transduction into BMM significantly attenuated the ability of MM-CM to increase OCL differentiation without altering OCL differentiation in control media. We found that the TBK1/IKKε inhibitor Amlexanox (Amlx) blocked normal and MM-enhanced OCL formation. Importantly, TBK1 mRNA expression in CD138+ plasma cells (PC) isolated from MM or PC leukemia patients is significantly higher as compared to PC from Monoclonal Gammopathy of Undetermined Significance (MGUS) patients. Therefore, we tested whether targeting the TBK1/ IKKε signaling pathways would also affect MM cells. We found that Amlx strongly decreased the viability of several MM cell lines and primary MM cells via induction of apoptosis. Amlx treatment of MM cell lines also induced a G1/S blockade, decreased activated ERK1/2, and increased translation of the dominant-negative C/EBPb-LIP isoform in several MM cell lines. The positive-acting C/EBPb-LAP isoform was previously shown to be a critical transcription factor for MM viability. Importantly, Amlx also enhanced the effectiveness of the proteasome inhibitors bortezomib and carfilzomib to kill MM cells in culture. Further, Amlx sensitized MM1.S cells to the induction of apoptosis by the autophagic inhibitor Bafilomycin A. Amlx dose-dependently inhibited tumor growth in a syngeneic MM mouse model in which 5TGM1 MM cells expressing secreted GLuc were injected subcutaneously into immunocompetent C57Bl/KaLwRij. Tumor growth was assessed by measuring tumor volumes and by the levels of secreted GLuc in the blood. Further, OCL formation ex vivo from bone marrow monocytes obtained from AMLX-treated mice versus controls was decreased. Amlx did not affect the viability of primary BMM, bone marrow stromal cells (BMSC), or splenocytes. Further, Amlx treatment of primary BMSC from MM patients or normal donors decreased expression of TNFα, IL-6 and RANKL, thereby decreasing BMSC support of MM survival and OCL differentiation. Amlx pretreatment of BMSC and murine pre-osteoblast MC4 cells also decreased VCAM1 expression and reduced MM cell adhesion, another mechanism for Amlx reduction of bone microenvironmental MM support. These data suggest that targeting TBK1/IKKε signaling may decrease MM bone disease by slowing MM growth, directly and indirectly, and preventing MM-induced osteolysis. Disclosures Giuliani: Janssen Pharmaceutica: Other: Avisory Board, Research Funding; Celgene Italy: Other: Avisory Board, Research Funding; Takeda Pharmaceutical Co: Research Funding. Roodman:Amgen Denosumab: Membership on an entity's Board of Directors or advisory committees.


Blood ◽  
2015 ◽  
Vol 126 (23) ◽  
pp. 4436-4436
Author(s):  
Barbara Muz ◽  
Pilar De La Puente ◽  
Micah John Luderer ◽  
Farideh Ordikhani ◽  
Abdel Kareem Azab

Abstract Introduction: Multiple myeloma (MM) is a lymphoplasmacytic malignancy characterized by the continuous spread of MM cells in and out of the bone marrow (BM). Despite the introduction of novel therapies, cancer patients relapse due to the development of drug resistant cells, which are, at least in part, promoted by hypoxia. Therefore, in this study we aimed to overcome drug resistance in MM by inhibition of the hypoxic responses in these cells. Tirapazamine (TPZ) is a hypoxia-activated pro-drug causing cell apoptosis, which has been shown to improve the outcome of patients with solid tumors when combined with radiotherapy; however, it has not been tested in MM. We used TPZ for the first time in MM to target the drug resistant cancer cells and sensitize them to therapy. Methods: To test the effect of TPZ on tumor survival in vitro, MM cell lines (MM1.s, H929, OPM1, RPMI8226) were exposed to normoxia (21% O2) or hypoxia (1% O2) for 24 hours with different concentrations of TPZ in order to obtain an IC50, and cell survival was assessed using MTT assay. Also, a combination of bortezomib and carfilzomib with or without TPZ was tested on cell survival. For in vivo study, 5 x 106 MM1s-Luc-GFP cells were injected intravenously (IV) into SCID mice and tumor progression was monitored for 3 weeks by bioluminescent imaging. First, we tested the hypoxic status of mice treated with and without a high-dose bortezomib (1.5mg/kg). Pimonidazole (PIM) was injected intraperitoneally (IP) into mice and 4 hours later BM was harvested, stained with anti-PIM-APC antibody and followed by measuring PIM signal in MM1s-GFP+ cells using flow cytometry. Second, we developed drug resistant cells by treating mice with a high-dose bortezomib (1.5mg/kg), and then treated with (1) bortezomib only (0.5mg/kg; n=3), or (2) bortezomib and TPZ (40mg/kg; n=3), all administered IP sequentially twice a week. The number of residual MM1s-GFP+ cells was calculated by flow cytometry. Results: We found that TPZ was active in a dose-dependent manner only in hypoxic conditions in MM cell lines. We showed that residual MM cells in the BM after high-dose bortezomib are hypoxic, as demonstrated by PIM staining. The combination of TPZ with bortezomib and carfilzomib resensitized cancer cells to death in hypoxia, overcoming hypoxia-induced drug resistance in vitro. Moreover, TPZ-treatment in combination with bortezomib further decreased residual MM cells in vivo. Conclusions: We reported that MRD was hypoxic and that TPZ, which was cytotoxic for MM cells only in hypoxic conditions, overcame hypoxia-induced drug resistance in vitro and killed bortezomib-resistant residual MM cells in vivo. This is the first study to show the efficacy of TPZ in MM. This data provides a preclinical basis for future clinical trials testing efficacy of TPZ in MM. Disclosures Azab: Selexys: Research Funding; Karyopharm: Research Funding; Cell Works: Research Funding; Targeted Therapeutics LLC: Other: Founder and owner ; Verastem: Research Funding.


Sign in / Sign up

Export Citation Format

Share Document