Characterization of the Short RNA Transcriptome of the Anucleate Platelet

Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. 4990-4990
Author(s):  
Eric R. Londin ◽  
Phillipe Loher ◽  
Leonard C. Edelstein ◽  
Kathy Delgrosso ◽  
Paolo M. Fortina ◽  
...  

Abstract The anucleate platelets play a critical role in the formation of thrombi and prevention of bleeding. In recent years, next-generation RNA sequencing (RNA-seq) has proven very useful in shedding light on the specifics of the platelet transcriptome. For example, RNA-seq of the long RNAs in platelets has revealed many non-coding RNAs (ncRNAs) as well as a diverse set of protein-coding genes whose mRNAs are highly correlated amongst individuals but only weakly linked to the currently available platelet proteome. By comparison, the short RNA transcriptome has not been as thoroughly characterized. As a matter of fact, these studies have so far focused on the 100’s of microRNAs (miRNAs) that are present in platelets leaving large swaths of the short RNA-ome uncharacterized. To gauge the complexity of the platelet short RNA-ome we performed short RNA-seq of leukocyte-depleted platelets from 10 healthy males (5 white and 5 black). The sequencing was done on the SOLiD 5500 XL platform and generated over 1.5 billion sequenced reads. To comprehensively characterize the complete short RNA-ome we only considered sequence reads that mapped on the genome without any mismatches but allowed a read to map to as many as 10,000 locations within the genome. This approach gave us the ability to simultaneously examine both the uniquely-present and the repeat-derived expressed elements of the genome. Using this approach, we were able to map ~50% of the sequenced reads. We found that for ~55% of the mapped reads their sequences are present at multiple genomic locations whereas the remaining ~45% originated from unique locations. Of the RNAs with unique genomic origins: ~50% correspond to miRNAs (with miR-223-3p being the most abundant miRNA across all 10 individuals), ~20% originate from various classes of repeat elements, and, the remaining 30% correspond to non-annotated regions of the genome that were non-annotated a of Release 75 of the ENSEMBL database. By comparison, of the RNAs with ambiguous genomic origins: ~20% belong to miRNAs (with miR-103a-3p, a miRNA present in two locations in the genome, being the most abundant miRNA across all 10 individuals) and ~60% correspond to various classes of repeat elements (with members of the HY4 scRNA ncRNAs accounting for nearly a third of all sequence reads). These findings make it evident that the platelet transcriptome has a considerable richness in short RNAs that arise from repetitive elements. To further characterize those RNAs that map to regions of the genome that are not currently annotated, we considered the possibility that they may be novel miRNAs. Using the miRDeep2 algorithm, we sought novel miRNAs among the uncharacterized transcripts and identified 47 of them; the sequences for 18 of these 47 appear at multiple genomic locations in analogy to miR-103/107, miR-19a/19b, etc. Lastly, as our ten samples represented two races, we hypothesized that a subset of the identified sequences would be differentially expressed between the two groups. Using DESeq2, we identified over 157 sequences to be differentially expressed. The most highly differentially expressed sequences corresponded to a miRNA and a repeat element. In summary, our RNA-seq analyses have revealed a very diverse spectrum of platelet short RNAs that transcends the miRNA category. Indeed, we find that short transcripts that have their source in genomic loci that have not been previously discussed or analyzed in the platelet context represent a very significant portion of all short RNAs in platelets. This in turn highlights an unanticipated richness, and presumably commensurate complexity, for the platelet transcriptome. While the role of these novel non-protein coding short RNAs is currently unknown it is expected that at least some of them may be of functional significance. Consequently, they could contribute to processes beyond thrombosis and hemostasis and may permit a better understanding of the molecular mechanisms that regulate platelet physiology. Disclosures No relevant conflicts of interest to declare.

Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. 3298-3298 ◽  
Author(s):  
Eric R. Londin ◽  
Eleftheria Hatzimichael ◽  
Phillipe Loher ◽  
Yue Zhao ◽  
Yi Jing ◽  
...  

Abstract Abstract 3298 The anucleate platelets play a critical role in the formation of thrombi and prevention of bleeding. While the repertoire of platelet transcripts is a reflection of the megakaryocyte at the time of platelet differentiation, post-transcriptional events are known to occur. Furthermore, a strong correlation between the expressed mRNAs and proteome has been identified. Having a complete understanding of the platelet transcriptome is important for generating insights into the genetic basis of platelet disease traits. To capture the complexity of the platelet transcriptome, we performed RNA sequencing (RNA-seq) in leukocyte-depleted platelets from 10 males, with median age of 24.5 yrs and unremarkable medical history. Their short and long RNA platelet transcriptomes were analyzed on the SOLiD 5500xl sequencing platform. We generated ∼3.5 billion sequence reads ∼40% of which could be mapped uniquely to the human genome. Our analysis revealed that ∼9,000 distinct protein-coding mRNAs and ∼800 microRNAs (miRNAs) were present in the transcriptome of each of the 10 sequenced individuals. Comparison of the levels of mRNA expression across the 10 individuals showed an exceptional level of consistency with pair-wise Pearson correlation values ≥0.98. The miRNA expression profiles across the 10 individuals showed a similar consistency with pair-wise Pearson correlation values ≥0.98. Surprisingly, we found that these mRNAs and miRNAs accounted for a little over 1/2 of all of the uniquely mapped sequence reads suggesting the abundant presence of additional non-protein coding RNA (ncRNA) transcripts. Using the annotated entries of the latest release of the ENSEMBL database, we investigated the genetic make-up of these other transcripts. We found that ∼25% of each individual's uniquely mapped reads corresponded to non-protein coding transcripts from mRNA-coding loci. These reads accounted for more than 10,000 distinct such transcripts. In addition, each of the individuals in our cohort expressed an average of ∼1,500 pseudogenes and ∼200 long intergenic non-coding RNAs (lincRNAs). The short RNA profiles of the ten individuals revealed an abundance of diverse categories of ncRNAs including the signal recognition particle RNA (srpRNA), small nuclear RNA (snRNA) and small cytoplasmic RNAs (scRNA). These ncRNAs are involved in the processing of pre-mRNAs and their presence and prevalence in the anucleate platetet suggests the existence of a complex network of mRNA processing that persists after the megakaryocyte fragmentation. We also investigated the RNA-omes of the ten individuals for evidence of transcription of the pyknon category of ncRNAs. Pyknons are of particular interest because each has numerous intergenic and intronic copies whereas nearly all known human protein-coding genes contain one or more pyknons in their mRNA. Recent experimental work has shown that intergenic instances of the pyknons are transcribed in a tissue- and cell-state specific manner. An average of ∼100,000 pyknons are transcribed in each of the 10 sequenced individuals suggesting the possibility of a far-reaching network of interactions that link exonic space to distant non-exonic regions and are active in platelets. Lastly, we found that a large variety of distinct repeat element categories are expressed in the RNA-omes (both short and long) of these individuals. Among the most abundantly represented categories of repeat elements were DNA transposons, long terminal repeat (LTR) retrotransposons, and non-LTR retrotransposons such as long interspersed elements (LINEs) and short interspersed elements (SINEs). In summary, our RNA-seq analyses have revealed a spectrum of platelet transcripts that transcends protein-coding genes and miRNAs. Indeed, the transcripts that have their source in genomic features not previously discussed or analyzed in the platelet context represent a very significant portion of all platelet transcripts. This in turn suggests an unanticipated richness, and presumably commensurate complexity, for the platelet transcriptome. While the role of these novel non-protein coding RNAs is currently unknown it is expected that at least some of them may be of functional significance which will in turn permit a better understanding of the molecular mechanisms that regulate platelet physiology and may contribute to processes beyond thrombosis and hemostasis. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. 390-390
Author(s):  
Paul F. Bray ◽  
Steven E. McKenzie ◽  
Leonard C. Edelstein ◽  
Srikanth Nagalla ◽  
Kathleen Delgrosso ◽  
...  

Abstract Abstract 390 A conspicuous lesson that has emerged from the 1000 Genomes Project is the greater genetic variation in the population than previously appreciated. Transcriptomics is rapidly assuming a prominent role in the understanding of basic molecular mechanisms accounting for variation within the normal population and disease states. Besides protein-coding RNAs, the importance of non-coding RNAs (ncRNAs) – primarily as regulators of gene expression – is well recognized but largely unexplored. The platelet transcriptome reflects megakaryocyte RNA content at the time of proplatelet release, subsequent splicing events, selective packaging and platelet RNA stability. An accurate understanding of the platelet transcriptome has both biological (improved understanding of platelet protein translation and the mechanisms of megakaryocyte/platelet gene expression) and clinical (novel biomarkers of disease) relevance. We carried out transcriptome sequencing of total RNA isolated from leukocyte-depleted platelet preparations from four healthy adults using an AB/LT SOLiD™ system. For each individual, we constructed 3 libraries: a) long (≥ 40 nucleotides) total RNA, b) long RNA depleted of rRNA, and c) short (< 40 nucleotides) RNA. ∼1 billion reads from the 12 datasets were mapped on each chromosome and strand of the human genome. About one-third mapped uniquely, similar to other unbiased methods like SAGE. Normalizing for transcript length and scale using ß-actin expression level provided the ability to appropriately scale expression within a read-set and to compare expression levels across read-sets. Of the known protein-coding loci, ∼9,500 were present in human platelets. Plotting the number of protein-coding genes as a function of the level of normalized expression underscored different gene estimates between total and rRNA-depleted RNA preparations, and substantial inter-individual variation in the less abundant genes. RT-PCR validated the RNA-seq estimates of transcript levels exhibiting a range of >3 orders of magnitude of normalized read counts (r=0.7757; p=0.0001). A strong correlation was measured between mRNAs identified by RNA-seq and 3 published microarray datasets for well-expressed mRNAs, although RNA-seq identified many more transcripts of lower abundance. Unexpectedly, ribosomal RNA depletion significantly and adversely affected estimates of the relative abundance of transcripts including members of the RNA interference pathway DGCR8, DROSHA, XPO5, DICER1, EIF2C1-4, which exhibited large differences (up to 32-fold) between the total and rRNA-depleted preparations. A rigorous and highly stringent approach identified bona fide intronic regions that gave rise to 6,992 and 1,236 currently uncharacterized long and short RNA transcripts, respectively. We discovered numerous previously unreported antisense transcripts: 1) to known protein-coding regions of the genome, 2) 10 miRNA precursors where each locus generated 1–2 distinct antisense transcripts, presumably mature and “star” miRNAs, and 3) long and short RNAs antisense to several known repeat families. We did not observe enrichment of long-intergenic ncRNAs. We considered various possible explanations for the ∼60% sequence reads that could not be mapped on the genome. Much more lenient parameter settings only accounted for only ∼6.5% sequenced reads. An even smaller fraction of reads was observed when considering all possible combinations of exon-exon junctions in the genome (12,382,819 junctions) and the highly polymorphic HLA region of chr 6, indicating these did not contribute in any substantive manner to the platelet transcriptome. Lastly, RNA-seq was highly reproducible (>97 for 1 subject studied on 4 occasions). In summary, our work reveals a richness and diversity of platelet RNA molecules, suggesting a context where platelet biology transcends protein- and mRNA-centric descriptions. We will provide a publicly available web tool of these data embedded in a local mirror of the UCSC genome browser, facilitating the elucidation of previously unappreciated molecular species and molecular interactions. This will eventually permit an improved understanding of the molecular mechanisms that regulate platelet physiology and that contribute to disorders of thrombosis, hemostasis and inflammation. Disclosures: No relevant conflicts of interest to declare.


2021 ◽  
Vol 22 (5) ◽  
pp. 2683
Author(s):  
Princess D. Rodriguez ◽  
Hana Paculova ◽  
Sophie Kogut ◽  
Jessica Heath ◽  
Hilde Schjerven ◽  
...  

Non-coding RNAs (ncRNAs) comprise a diverse class of non-protein coding transcripts that regulate critical cellular processes associated with cancer. Advances in RNA-sequencing (RNA-Seq) have led to the characterization of non-coding RNA expression across different types of human cancers. Through comprehensive RNA-Seq profiling, a growing number of studies demonstrate that ncRNAs, including long non-coding RNA (lncRNAs) and microRNAs (miRNA), play central roles in progenitor B-cell acute lymphoblastic leukemia (B-ALL) pathogenesis. Furthermore, due to their central roles in cellular homeostasis and their potential as biomarkers, the study of ncRNAs continues to provide new insight into the molecular mechanisms of B-ALL. This article reviews the ncRNA signatures reported for all B-ALL subtypes, focusing on technological developments in transcriptome profiling and recently discovered examples of ncRNAs with biologic and therapeutic relevance in B-ALL.


2021 ◽  
Author(s):  
Chengang Guo ◽  
Zhimin wei ◽  
Wei Lyu ◽  
Yanlou Geng

Abstract Quinoa saponins have complex, diverse and evident physiologic activities. However, the key regulatory genes for quinoa saponin metabolism are not yet well studied. The purpose of this study was to explore genes closely related to quinoa saponin metabolism. In this study, the significantly differentially expressed genes in yellow quinoa were firstly screened based on RNA-seq technology. Then, the key genes for saponin metabolism were selected by gene set enrichment analysis (GSEA) and principal component analysis (PCA) statistical methods. Finally, the specificity of the key genes was verified by hierarchical clustering. The results of differential analysis showed that 1654 differentially expressed genes were achieved after pseudogenes deletion. Therein, there were 142 long non-coding genes and 1512 protein-coding genes. Based on GSEA analysis, 116 key candidate genes were found to be significantly correlated with quinoa saponin metabolism. Through PCA dimension reduction analysis, 57 key genes were finally obtained. Hierarchical cluster analysis further demonstrated that these key genes can clearly separate the four groups of samples. The present results could provide references for the breeding of sweet quinoa and would be helpful for the rational utilization of quinoa saponins.


2020 ◽  
Author(s):  
Siew Woh Choo ◽  
Yu Zhong ◽  
Edward Sendler ◽  
Anton Scott Goustin ◽  
Juan Cai ◽  
...  

Abstract BackgroundEstrogen is a hormone that is frequently essential in breast cancer to drive key transcriptional programs by interacting with the estrogen receptor alpha that upregulates proliferative and oncogenic genes and represses apoptotic and tumor suppressor genes. Protein-coding targets of estrogen regulation in breast cancer are well-defined. However, long non-coding RNA (lncRNA) genes account for the majority of human gene catalogs. The coding status of these genes – their accidental, or regulated, translation by ribosomes, under the influence of estrogen – remains a controversial topic. MethodsHere, we performed comprehensive transcriptome analysis using RNA-Seq, as well as ribosome profiling using Ribo-Seq, on the same samples: biological replicates of human estrogen receptor alpha (ERa) positive MCF7 breast cancer cells before and after estrogen treatment. We correlated these two datasets, globally highlighting protein-coding and lncRNA differentially expressed genes and transcripts that were positively as well as negatively responsive to estrogen, separately at the transcriptional level and the translational (as approximated by ribosome binding) level.ResultsOur data showed that some transcripts were more robustly detected in RNA-Seq than in the ribosome-profiling data, and vice versa, suggesting distinct gene-specific estrogen responses at the transcriptional and the translational level, respectively. Certain differentially expressed transcripts may point to the regulation of alternative splicing by estrogen. Several pseudogenes were co- and anti-regulated with their cancer-functional parental genes. Gene ontology analysis highlighted cancer-relevant pathways enriched after estrogen treatment in cells.ConclusionsOur study represents a significant advance in the estrogen receptor biology, because we demonstrated global effects of estrogen on splicing and translation that are distinct from, and not always correlated with, its effects on transcription, and that differ globally for protein-coding and lncRNA genes. We have also highlighted for the first time the transcriptional and translational response of expressed pseudogenes to estrogen, pointing to new perspectives for biomarker and drug-target development for breast cancer in future.


2019 ◽  
Vol 20 (10) ◽  
pp. 2391 ◽  
Author(s):  
Jiayang Xu ◽  
Qiansi Chen ◽  
Pingping Liu ◽  
Wei Jia ◽  
Zheng Chen ◽  
...  

Salinity is one of the most severe forms of abiotic stress and affects crop yields worldwide. Plants respond to salinity stress via a sophisticated mechanism at the physiological, transcriptional and metabolic levels. However, the molecular regulatory networks involved in salt and alkali tolerance have not yet been elucidated. We developed an RNA-seq technique to perform mRNA and small RNA (sRNA) sequencing of plants under salt (NaCl) and alkali (NaHCO3) stress in tobacco. Overall, 8064 differentially expressed genes (DEGs) and 33 differentially expressed microRNAs (DE miRNAs) were identified in response to salt and alkali stress. A total of 1578 overlapping DEGs, which exhibit the same expression patterns and are involved in ion channel, aquaporin (AQP) and antioxidant activities, were identified. Furthermore, genes involved in several biological processes, such as “photosynthesis” and “starch and sucrose metabolism,” were specifically enriched under NaHCO3 treatment. We also identified 15 and 22 miRNAs that were differentially expressed in response to NaCl and NaHCO3, respectively. Analysis of inverse correlations between miRNAs and target mRNAs revealed 26 mRNA-miRNA interactions under NaCl treatment and 139 mRNA-miRNA interactions under NaHCO3 treatment. This study provides new insights into the molecular mechanisms underlying the response of tobacco to salinity stress.


Blood ◽  
2011 ◽  
Vol 117 (2) ◽  
pp. e27-e38 ◽  
Author(s):  
Brian T. Wilhelm ◽  
Mathieu Briau ◽  
Pamela Austin ◽  
Amélie Faubert ◽  
Geneviève Boucher ◽  
...  

Abstract The molecular mechanisms regulating self-renewal of leukemia stem cells remain poorly understood. Here we report the generation of 2 closely related leukemias created through the retroviral overexpression of Meis1 and Hoxa9. Despite their apparent common origin, these clonal leukemias exhibit enormous differences in stem cell frequency (from 1 in 1.4, FLA2; to 1 in 347, FLB1), suggesting that one of these leukemias undergoes nearly unlimited self-renewal divisions. Using next-generation RNA-sequencing, we characterized the transcriptomes of these phenotypically similar, but biologically distinct, leukemias, identifying hundreds of differentially expressed genes and a large number of structural differences (eg, alternative splicing and promoter usage). Focusing on ligand-receptor pairs, we observed high expression levels of Sdf1-Cxcr4; Jagged2-Notch2/1; Osm-Gp130; Scf-cKit; and Bmp15-Tgfb1/2. Interestingly, the integrin beta 2-like gene (Itgb2l) is both highly expressed and differentially expressed between our 2 leukemias (∼ 14-fold higher in FLA2 than FLB1). In addition, gene ontology analysis indicated G-protein-coupled receptor had a much higher proportion of differential expression (22%) compared with other classes (∼ 5%), suggesting a potential role regulating subtle changes in cellular behavior. These results provide the first comprehensive transcriptome analysis of a leukemia stem cell and document an unexpected level of transcriptome variation between phenotypically similar leukemic cells.


Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. 864-864
Author(s):  
Dewen You ◽  
Andrew Volk ◽  
Clare Sun ◽  
Junping Xin ◽  
Geunhyoung Ha ◽  
...  

Abstract Abstract 864 Phosphatase and tensin homolog on chromosome 10 (Pten) is a tumor suppressor which possesses both lipid and protein phosphatase activities. Mutations and epigenetic inactivations of the Pten gene are commonly detected in a large number of tissue malignancies, including leukemias and lymphomas. Studies using Hematopoietic Pten-knockout in adult mice (Pten−/−) have demonstrated that Pten plays a critical role in maintaining the homeostasis of bone marrow (BM) hematopoiesis. Pten inactivation promotes the proliferation and peripheral mobilization of BM hematopoietic stem cells (HSCs). Pten−/− mice develop myeloproliferative disorders (MPD) within days, followed by acute leukemic transformation. Most previous studies attributed such phenotypic changes observed in Pten−/− mice to excessive activation of the PI3K/AKT/mTOR signal, a consequence of the loss of Pten's lipid phosphatase activity. However, the role of Pten's protein phosphatase activity in the regulation of HSCs and leukemogenesis is not well studied. Focal adhesion kinase (Fak) is a critical substrate for the protein phosphatase activity of Pten. Dysregulation of Fak has been observed in many cancers, including acute myeloid leukemias (AML) and acute lymphocytic leukemias (ALL). Therefore, we postulated that Fak might play a pivotal role in the development and progression of leukemia following Pten deletion. To test this hypothesis, we generated Mx1-Cre+Ptenfl/flFakfl/fl mice (an interferon-inducible Pten and Fak compound-knockout, Pten−/−Fak−/−) in which both the Pten and Fak genes in the hematopoietic system are deleted upon injection of polyinosinic-polycytidylic acid (pI-pC). Our results showed that the genetic inactivation of Fak can partially rescue HSC defects associated with Pten deficiency. We found that peripheral mobilization of HSCs in Pten−/−Fak−/− mice is significantly reduced compared to Pten−/− mice. As a consequence, more long-term HSCs (LT-HSCs) are preserved in the BM of Pten−/−Fak−/− mice compared to Pten−/− mice. Transplantation studies suggested that the hematopoietic reconstitutive capacity of Pten−/−Fak−/− HSCs is significantly improved compared to Pten−/− HSCs. Although Fak deletion fails to prevent the development of MPD in Pten−/− mice, Fak deletion does significantly reduce the frequency of AML/ALL, also significantly delays the onset of AML/ALL in comparison to Pten−/− mice. This study suggests that Fak might be a potential target for preventing the MPD-to-AML/ALL transformation and therefore blocking the Fak activity may hold a promise for a novel anti-leukemia therapy. The molecular mechanisms underlying the phenotype restoration of Pten−/− mice by Fak deletion in the hematopoietic system are actively being studied in our laboratory. Disclosures: No relevant conflicts of interest to declare.


2021 ◽  
Vol 12 ◽  
Author(s):  
Si Ying Li ◽  
Chen Yi Wang ◽  
Yun Xia Xiao ◽  
Xiao Bing Tang ◽  
Zheng Wei Yuan ◽  
...  

Anorectal malformations (ARMs) are among the most common congenital terminal digestive tract malformations. Circular RNAs (circRNAs), a novel type of endogenous non-coding RNAs, play roles in the development of the digestive system; however, their contributions to the pathogenesis of ARMs are not well-established. In this study, we explored the mechanism underlying ethylenethiourea (ETU)-induced ARMs by profiling circRNA expression via RNA-seq and constructing a regulatory circRNA-miRNA-mRNA network. Nine pregnant rats were gavage-fed a single dose of 125 mg/kg 1% ETU (ARM group) on gestational day 10 (GD10), and another 9 pregnant rats received a similar dose of saline (normal group) as a control. Embryos were obtained by cesarean section on the key time-points of anorectal development (GD14, GD15, and GD16). Hindgut samples isolated from the fetuses were evaluated by high-throughput sequencing and differentially expressed circRNAs were validated by reverse transcription-quantitative polymerase chain reaction, agarose gel electrophoresis, and Sanger cloning and sequencing. A total of 18295 circRNAs were identified in the normal and ARM groups. Based on the 425 differentially expressed circRNAs (|Fc| &gt; 2, p &lt; 0.05), circRNA-miRNA and miRNA-mRNA pairs were predicted using miREAP, miRanda, and TargetScan. A total of 55 circRNAs (14 up- and 41 downregulated in the ARM group compared to the normal group) were predicted to bind to 195 miRNAs and 947 mRNAs. Competing endogenous RNA networks and a Kyoto Encyclopedia of Genes and Genomes analysis revealed that novel_circ_001042 had the greatest connectivity and was closely related to ARM-associated signaling pathways, such as the Wingless Type MMTV integration site family, mitogen-activated protein kinase, and transforming growth factor-β pathways. These results provide original insight into the roles of circRNAs in ARMs and provide a valuable resource for further analyses of molecular mechanisms and signaling networks.


2020 ◽  
Author(s):  
Chao Huang ◽  
Xiaojian Zhu ◽  
Jiefeng Zhao ◽  
Fanqin Bu ◽  
Jun Huang ◽  
...  

Abstract Background Gastric cancer (GC) is a malignant tumor with high mortality. MicroRNAs (miRNAs) participate in various biological processes and disease pathogenesis by targeting messenger RNA (mRNA). The purpose of this study was to identify potential prognostic molecular markers of GC and to characterize the molecular mechanisms of GC. Methods A gene expression profiling dataset (GSE54129) and miRNA expression profiling dataset (GSE113486) were downloaded from the Gene Expression Omnibus (GEO) database. A miRNA-mRNA interaction network was established. Functional and pathway enrichment analyses were performed for differentially expressed genes (DEGs) and differentially expressed miRNAs (DEMs) using FunRich, the clusterProfiler package, and DIANA-mirPath. Survival analysis of key molecular markers was performed using the online tool Kaplan-Meier Plotter and the database OncomiR. Finally, experiments were carried out to verify the expression levels and biological functions of a key gene. Results A total of 390 DEMs and 341 DEGs were identified. Ultimately, 45 genes and 31 miRNAs were selected to establish a miRNA-mRNA regulatory network. Four hub genes (ZFPM2, FUT9, NEUROD1 and LIPH) and six miRNAs (hsa-let-7d-5p, hsa-miR-23b-3p, hsa-miR-23a-3p, hsa-miR-133b, hsa-miR-130a-3p and hsa-miR-124-3p) were identified in the network. DEGs and DEMs were associated with ECM-receptor interactions and metabolic pathways. Two genes (ZFPM2 and LIPH) and two miRNAs (hsa-miR-23a-3p and hsa-miR-130a-3p) were observed to be related to the prognosis of GC. ZFPM2 was highly expressed in GC tissues and various GC cell lines and could promote the proliferation, invasion and migration of GC cells. Conclusion The expression levels of ZFPM2, LIPH, hsa-miR-23a-3p and hsa-miR-130a-3p were closely related to the prognosis of GC. ZFPM2 may serve as a potential molecular marker and therapeutic target for GC. ECM receptor interactions and metabolic abnormalities play a critical role in the GC progression.


Sign in / Sign up

Export Citation Format

Share Document