scholarly journals Aberrant PD-L1 Expression in CLL As a Result of Adaptive Immune Resistance Mediated By Tumor-Secreted Circulating miRNA Binding to Toll-like Receptor 7

Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. 716-716
Author(s):  
Fabienne McClanahan ◽  
Federica Calore ◽  
Nicola Zanesi ◽  
John G. Gribben ◽  
Carlo M. Croce

Abstract Background: Chronic lymphocytic leukaemia (CLL) is a model cancer to study immune evasion via PD-L1/PD-1 signalling: aberrantly expressed PD-L1 on CLL and PD-1 on CD8 T cells are key mediators of poor anti-tumor immune responses, which are a major hallmark of CLL. Several preclinical studies suggest that aberrant PD-L1 expression is a result of adaptive immune resistance and is induced during immune responses within the tumor microenvironment. It has recently been proposed that specific circulating microRNAs (miRNAs) shed by malignant cells participate in the complex crosstalk between cancer cells and microenvironment, and that they activate immune cells via Toll-Like Receptor (TLR) 7 due to their structural similarity to its natural ligand. In addition, TLR signaling has been demonstrated to result in the upregulation of costimulatory molecules such as CD80, CD86 and PD-L1/2. In CLL, aberrant circulating miRNA and TLR expression patterns have been well characterized. Therefore, we hypothesized that aberrant PD-L1 expression in CLL is a result of continuous TLR7 signaling mediated by circulating miRNAs. Our aims were to demonstrate that (1) specific circulating miRNAs induce PD-L1 expression and have functional consequences, (2) miRNA/PD-L1 associations are mediated via TLR7, and (3) miR/TLR/PD-L1 interactions are subject to the dynamics of CLL development. Methods and Materials: Mononuclear cells from spleen cell suspensions from 3 month old TCL1 transgenic, wild-type (WT) or TLR7-/- mice (total n=13) were treated ex vivo for 18hours with liposomal formulations of synthetic scrambled miRNA or miRNAs -16 (negative control), -21, -29, -150 and -155, which are reported to have an effect on immune cells and to be released by CLL cells. Specific TLR7 and TLR9 agonists were included for comparison. Primary human CLL cells and healthy B cells were treated with specific TLR2/6, TLR7 and TLR9 agonists. In adoptive transfer experiments, young WT mice (n=15) were injected with 4x107CLL cells from TCL1 transgenic mice. Mice were sacrificed at days 3, 6, 9, 12 and 15, and spleen cells were treated ex vivo as above. Changes in surface PD-L1, CD69 and CD86 expression on DAPI-negative CD19+ B cells/CLL cells were determined by flow cytometry. Supernatant cytokines were screened by multiplex ELISA. Results: PD-L1 surface expression on spleen B cells from both WT and non-leukemic TCL1 mice was strongly induced by miRs -21 and -29, and moderately by -150 and -155, but not by miR-16 negative control. The degree of PD-L1 upregulation by miRs -21 and -29 was comparable to the effect of direct TLR7 and TLR9 binding by specific agonists. Similar patterns were seen for CD69 and CD86 expression. Across treatment conditions, PD-L1 expression was highly correlated with the expression of CD69 (r .7777, p<.0001) and CD86 (r .7516, p<.0001). This observation strongly suggests that PD-L1 expression after TLR engagement is a marker of activation/costimulation, and therefore a physiological adaptive immune response to TLR binding in healthy B cells. Functionally, miR treatments resulted in increased IL-6, IL-10 and TNFα, with miR-29 having the strongest effect. PD-L1, CD69 and CD86 could also be induced by TLR engagement in healthy B cells, but not in CLL patient cells, where PD-L1 was confirmed to be already aberrantly expressed. To elucidate when in the course of CLL development PD-L1 expression becomes aberrant and if it ceases to be inducible by miR treatment, we sacrificed adoptively transferred mice every 3 days to simulate tumor development. With increasing CLL the magnitude of the fold-change of PD-L1 expression following miR treatment decreased substantially, and the baseline expression of miR-untreated B cells increased consistently until day 15. Interestingly, although the PD-L1 response was substantially decreased with tumor load, it was not completely abrogated, even on day 15 when mice had a median CLL load of 71%. Importantly, miR treatment did not result in increased PD-L1, CD69 or CD86 expression in B cells from TLR7-/- mice, indicating that the miR/PD-L1 interactions are indeed mediated by TLR7. Conclusions: Our findings support that PD-L1 expression on B cells can be induced by specific miRNAs known to be produced by CLL cells, and that this effect is mediated via TLR7. Therefore, aberrant PD-L1 expression on CLL is likely to be a result of adaptive immune resistance mediated by tumor cell-produced circulating miRNAs. Disclosures Gribben: Celgene: Research Funding; Pharmacyclics: Honoraria; Roche: Honoraria.

2021 ◽  
Vol 22 (10) ◽  
pp. 5386
Author(s):  
Maria Namwanje ◽  
Bijay Bisunke ◽  
Thomas V. Rousselle ◽  
Gene G. Lamanilao ◽  
Venkatadri S. Sunder ◽  
...  

Dendritic cells (DCs) are unique immune cells that can link innate and adaptive immune responses and Immunometabolism greatly impacts their phenotype. Rapamycin is a macrolide compound that has immunosuppressant functions and is used to prevent graft loss in kidney transplantation. The current study evaluated the therapeutic potential of ex-vivo rapamycin treated DCs to protect kidneys in a mouse model of acute kidney injury (AKI). For the rapamycin single (S) treatment (Rapa-S-DC), Veh-DCs were treated with rapamycin (10 ng/mL) for 1 h before LPS. In contrast, rapamycin multiple (M) treatment (Rapa-M-DC) were exposed to 3 treatments over 7 days. Only multiple ex-vivo rapamycin treatments of DCs induced a persistent reprogramming of mitochondrial metabolism. These DCs had 18-fold more mitochondria, had almost 4-fold higher oxygen consumption rates, and produced more ATP compared to Veh-DCs (Veh treated control DCs). Pathway analysis showed IL10 signaling as a major contributing pathway to the altered immunophenotype after Rapamycin treatment compared to vehicle with significantly lower cytokines Tnfa, Il1b, and Il6, while regulators of mitochondrial content Pgc1a, Tfam, and Ho1 remained elevated. Critically, adoptive transfer of rapamycin-treated DCs to WT recipients 24 h before bilateral kidney ischemia significantly protected the kidneys from injury with a significant 3-fold improvement in kidney function. Last, the infusion of DCs containing higher mitochondria numbers (treated ex-vivo with healthy isolated mitochondria (10 µg/mL) one day before) also partially protected the kidneys from IRI. These studies demonstrate that pre-emptive infusion of ex-vivo reprogrammed DCs that have higher mitochondria content has therapeutic capacity to induce an anti-inflammatory regulatory phenotype to protect kidneys from injury.


2020 ◽  
Vol 13 (1) ◽  
Author(s):  
Qin Zhao ◽  
Miusi Shi ◽  
Chengcheng Yin ◽  
Zifan Zhao ◽  
Jinglun Zhang ◽  
...  

AbstractThe immune response of a biomaterial determines its osteoinductive effect. Although the mechanisms by which some immune cells promote regeneration have been revealed, the biomaterial-induced immune response is a dynamic process involving multiple cells. Currently, it is challenging to accurately regulate the innate and adaptive immune responses to promote osteoinduction in biomaterials. Herein, we investigated the roles of macrophages and dendritic cells (DCs) during the osteoinduction of biphasic calcium phosphate (BCP) scaffolds. We found that osteoinductive BCP directed M2 macrophage polarization and inhibited DC maturation, resulting in low T cell response and efficient osteogenesis. Accordingly, a dual-targeting nano-in-micro scaffold (BCP loaded with gold nanocage, BCP-GNC) was designed to regulate the immune responses of macrophages and DCs. Through a dual-wavelength photosensitive switch, BCP-GNC releases interleukin-4 in the early stage of osteoinduction to target M2 macrophages and then releases dexamethasone in the later stage to target immature DCs, creating a desirable inflammatory environment for osteogenesis. This study demonstrates that biomaterials developed to have specific regulatory capacities for immune cells can be used to control the early inflammatory responses of implanted materials and induce osteogenesis.


2020 ◽  
Vol 8 (Suppl 2) ◽  
pp. A13.1-A13
Author(s):  
LK Klauer ◽  
O Schutti ◽  
S Ugur ◽  
F Doraneh-Gard ◽  
N Rogers ◽  
...  

BackgroundMyeloid leukaemic blasts can be converted into leukaemia derived dendritic cells (DCleu) with blastmodulatory Kit-I and Kit-M, which have the competence to regularly activate T and immunoreactive cells to gain anti-leukaemic activity or rather cytotoxicity. As innate and adaptive immune responses are notably promoted by the cytokine interferon gamma (IFNy), we hypothesised that the IFNy secretion could be a suitable parameter to display DC/DCleu mediated immunologic activity and even anti-leukaemic cytotoxicity.Materials and MethodsDC/DCleu were generated from leukaemic WB with Kit-I (GM-CSF + OK-432) and Kit-M (GM-CSF + PGE1) and used to stimulate T cell enriched immunoreactive cells. Initiated anti-leukaemic cytotoxicity was investigated with a cytotoxicity fluorolysis assay (CTX). Initiated IFNy secretion of innate and adaptive immune cells (T cells, TCD4+ cells, TCD8+ cells, NKCD56+ cells, NKCD161+ cells, CIKCD56+ cells, CIKCD161+ cells and iNKT) was investigated with a cytokine secretion assay (CSA). In some cases IFNy production was additionally evaluated with an intracellular cytokine assay (ICA). Conclusively, the IFNy secretion of immunoreactive cells was correlated with the anti-leukaemic cytotoxicity.ResultsSignificant amounts of DC and DCleu as well as migratory DC and DCleu could be generated with Kit-I and Kit-M without induction of blast proliferation. T cell enriched immunoreactive cells stimulated with DC/DCleu showed an increased anti-leukaemic cytotoxicity and an increased IFNy secretion of T, NK and CIK cells compared to control. Both the CSA and ICA yielded comparable amounts of IFNy positive innate and adaptive immune cells. The correlation between the IFNy secretion of immunoreactive cells and the anti-leukaemic cytotoxicity showed a positive relationship in T cells, TCD4+ cells, TCD8+ cells and NKCD56+ cells.ConclusionsWe found blastmodulatory Kit-I and Kit-M competent to generate DC/DCleu from leukaemic WB. Stimulation of T cell enriched immunoreactive cells with DC/DCleu regularly resulted in an increased anti-leukaemic cytotoxicity and an increased IFNy dependent immunological activity of T, NK and CIK cells compared to control. Moreover the anti-leukaemic cytotoxicity positively correlated with the IFNy secretion in T cells, TCD4+ cells, TCD8+ cells, NKCD56+ cells. We therefore consider the IFNy secretion of innate and adaptive immune cells to be a suitable parameter to assess the efficacy of in vitro and potentially in vivo AML immunotherapy. The CSA in this regard proved to be a convenient and reproducible technique to detect and phenotypically characterise IFNy secreting cells of the innate and adaptive immune system.Disclosure InformationL.K. Klauer: None. O. Schutti: None. S. Ugur: None. F. Doraneh-Gard: None. N. Rogers: None. M. Weinmann: None. D. Krämer: None. A. Rank: None. C. Schmid: None. B. Eiz-Vesper: None. H.M. Schmetzer: None.


2017 ◽  
Vol 2017 ◽  
pp. 1-15 ◽  
Author(s):  
Martin Solders ◽  
Laia Gorchs ◽  
Sebastian Gidlöf ◽  
Eleonor Tiblad ◽  
Anna-Carin Lundell ◽  
...  

The maternal part of the placenta, the decidua, consists of maternal immune cells, decidual stromal cells, and extravillous fetal trophoblasts. In a successful pregnancy, these cell compartments interact to provide an intricate balance between fetal tolerance and antimicrobial defense. These processes are still poorly characterized in the two anatomically different decidual tissues, basalis and parietalis. We examined immune cells from decidua basalis and parietalis from term placentas (n=15) with flow cytometry. By using multivariate discriminant analysis, we found a clear separation between the two decidual compartments based on the 81 investigated parameters. Decidua parietalis lymphocytes displayed a more activated phenotype with a higher expression of coinhibitory markers than those isolated from basalis and contained higher frequencies of T regulatory cells. Decidua basalis contained higher proportions of monocytes, B cells, and mucosal-associated invariant T (MAIT) cells. The basalis B cells were more immature, and parietalis MAIT cells showed a more activated phenotype. Conventional T cells, NK cells, and MAIT cells from both compartments potently responded with the production of interferon-γand/or cytotoxic molecules in response to stimulation. To conclude, leukocytes in decidua basalis and parietalis displayed remarkable phenotypic disparities, indicating that the corresponding stromal microenvironments provide different immunoregulatory signals.


2002 ◽  
Vol 195 (6) ◽  
pp. 771-780 ◽  
Author(s):  
Hedda Wardemann ◽  
Thomas Boehm ◽  
Neil Dear ◽  
Rita Carsetti

Splenectomized individuals are prone to overwhelming infections with encapsulated bacteria and splenectomy of mice increases susceptibility to streptococcal infections, yet the exact mechanism by which the spleen protects against such infections is unknown. Using congenitally asplenic mice as a model, we show that the spleen is essential for the generation of B-1a cells, a B cell population that cooperates with the innate immune system to control early bacterial and viral growth. Splenectomy of wild-type mice further demonstrated that the spleen is also important for the survival of B-1a cells. Transfer experiments demonstrate that lack of these cells, as opposed to the absence of the spleen per se, is associated with an inability to mount a rapid immune response against streptococcal polysaccharides. Thus, absence of the spleen and the associated increased susceptibility to streptococcal infections is correlated with lack of B-1a B cells. These findings reveal a hitherto unknown role of the spleen in generating and maintaining the B-1a B cell pool.


2011 ◽  
Vol 208 (8) ◽  
pp. 1661-1671 ◽  
Author(s):  
Takako Nakano-Yokomizo ◽  
Satoko Tahara-Hanaoka ◽  
Chigusa Nakahashi-Oda ◽  
Tsukasa Nabekura ◽  
Nadia K. Tchao ◽  
...  

DAP12, an immunoreceptor tyrosine-based activation motif–bearing adapter protein, is involved in innate immunity mediated by natural killer cells and myeloid cells. We show that DAP12-deficient mouse B cells and B cells from a patient with Nasu-Hakola disease, a recessive genetic disorder resulting from loss of DAP12, showed enhanced proliferation after stimulation with anti-IgM or CpG. Myeloid-associated immunoglobulin-like receptor (MAIR) II (Cd300d) is a DAP12-associated immune receptor. Like DAP12-deficient B cells, MAIR-II–deficient B cells were hyperresponsive. Expression of a chimeric receptor composed of the MAIR-II extracellular domain directly coupled to DAP12 into the DAP12-deficient or MAIR-II–deficient B cells suppressed B cell receptor (BCR)–mediated proliferation. The chimeric MAIR-II–DAP12 receptor recruited the SH2 domain–containing protein tyrosine phosphatase 1 (SHP-1) after BCR stimulation. DAP12-deficient mice showed elevated serum antibodies against self-antigens and enhanced humoral immune responses against T cell–dependent and T cell–independent antigens. Thus, DAP12-coupled MAIR-II negatively regulates B cell–mediated adaptive immune responses.


Sign in / Sign up

Export Citation Format

Share Document