Regulation of Immune Responses during Acute GvHD Via the IL-33/ST2 Axis

Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. 844-844
Author(s):  
Dawn K Reichenbach ◽  
Vincent Schwarze ◽  
Benjamin M Matta ◽  
Victor Tkachev ◽  
Elizabeth Lieberknecht ◽  
...  

Abstract The IL-1 superfamily member IL-33 is produced in barrier tissues. IL-33 binds to the receptor suppression of tumorigenicity 2 (ST2), expressed on stromal cells, regulatory T cells (Tregs), myeloid derived suppressor cells (MDSCs), and macrophages. IL-33 has both anti-inflammatory and pro-inflammatory properties. It is not known if IL-33 plays a role in acute GvHD, and if so what properties it exerts. By immunohistochemistry staining of gut tissues, IL-33 production by non-hematopoietic cells was increased in mice post-conditioning and in patients during GvHD. To determine whether IL-33 could augment GvHD via a host signaling mechanism, we compared st2-/-to wildtype (wt) hosts and observed decreased GvHD lethality (Figure 1A). Additionally, IL-33-/- versus wt hosts had a marked decrease in GvHD lethality and reduced TNFα production. Conversely, IL-33 administration during the peak inflammatory response worsened GvHD. Previous studies have shown increased levels of the soluble form of ST2 (sST2) are a biomarker for steroid-refractory GvHD (Vander Lugt, NEJM, 2013). We hypothesized that sST2 acted not only as an indicator of tissue injury and biomarker of GvHD but also as an immune modulator during GvHD. In rodents, we found that ST2 was upregulated on alloreactive T cells and sST2 increased as GvHD progressed. St2-/-versus wt donor T cells had a marked reduction in GvHD lethality (Figure 1B) without compromise of graft-vs-leukemia responses. Comparable data was seen in 2 different strain combinations. Alloantigen-induced IL-18 receptor upregulation was significantly lower in the absence of ST2, which was linked to significantly reduced IFNγ production by st2-/- vs wt CD4 and CD8 T cells during GvHD. Similarly, sST2 transgenic hosts and wt recipients given exogenous sST2-Fc fusion protein infusions (Figure 1C) to block ST2/IL-33 interaction each had significantly reduced GVHD lethality, establishing the functional role of ST2 as a decoy receptor modulating GVHD. During the peak of the GvHD inflammatory response, IL-33 signalling of either donor or host cells promoted activation of donor T cells, while the use of exogenous sST2-Fc protein to prevent IL33/ST2 engagement ameliorates disease. Together, these studies point to targeting of the IL-33/ST2 axis as a novel and potent target for GvHD therapy. Disclosures Warncke: Novartis Pharma AG: Employment. Junt:Novartis Pharma AG: Employment.

1983 ◽  
Vol 158 (2) ◽  
pp. 546-558 ◽  
Author(s):  
A G Rolink ◽  
E Gleichmann

Previous work from this laboratory has led to the hypothesis that the stimulatory pathological symptoms of chronic graft-vs.-host disease (GVHD) are caused by alloreactive donor T helper (TH) cells, whereas the suppressive pathological symptoms of acute GVHD are caused by alloreactive T suppressor (TS) cells of the donor. In the present paper we analyzed the Lyt phenotypes of B10 donor T cells required for the induction of either acute or chronic GVHD in H-2-different (B10 X DBA/2)F1 recipients. First, nonirradiated F1 mice were used as the recipients. We found that unseparated B10 T cells induced only a moderate formation of systemic lupus erythematosus (SLE)-like autoantibodies, but a high percentage of lethal GVHD (LGVHD). In contrast, Lyt-1+2- donor T cells were unable to induce LGVHD in these recipients; these cells were capable, however, of inducing a vigorous formation of SLE-like autoantibodies and the formation of severe immune-complex glomerulonephritis. Lyt-1-2+ T cells were incapable of inducing either acute or chronic GVHD. In another experiment, the sensitivity and accuracy of the GVH system were increased by using irradiated F1 mice as recipients and by comparing donor-cell inocula that contained similar numbers of T lymphocytes. In addition, donor-cell inocula were used that had been tested for their allohelper and allosuppressor effects on F1 B cells in vitro. In the irradiated F1 recipients, too, unseparated donor T cells were superior to T cell subsets in inducing LGVHD; Lyt-1-2+ donor cells were completely and Lyt-1+2- donor cells were almost incapable of doing so. In contrast, Lyt-1+2- T cells, but neither unseparated T cells nor Lyt-1-2+ T cells, were capable of inducing a vigorous formation of SLE-like auto-antibodies. We conclude that the stimulatory pathological symptoms of chronic GVHD are caused by Lyt-1+2- allohelper T cells. In contrast, the development of the suppressive pathological symptoms of acute GVHD appears to involve alloreactive Lyt-1+2+ T suppressor cells.


Blood ◽  
2007 ◽  
Vol 110 (1) ◽  
pp. 9-17 ◽  
Author(s):  
Ronjon Chakraverty ◽  
Megan Sykes

After allogeneic blood or bone marrow transplantation, donor T cells interact with a distorted antigen-presenting cell (APC) environment in which some, but not all, host APCs are replaced by APCs from the donor. Significantly, host APCs are required for the priming of acute graft-versus-host disease (GVHD). Donor APCs play a lesser role in the induction of acute GVHD despite their predicted capacity to cross-present host antigens. In contrast, donor APCs may play a role in perpetuating the tissue injury observed in chronic GVHD. Host APCs are also required for maximal graft-versus-leukemia responses. Recent studies have suggested potential strategies by which the continued presence of host APCs can be exploited to prime strong donor immunity to tumors without the induction of GVHD.


Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 426-426
Author(s):  
Scott R. Solomon ◽  
Thao Tran ◽  
Charles S. Carter ◽  
Nancy Hensel ◽  
Laura Wisch ◽  
...  

Abstract Graft-versus-host disease (GVHD) remains a major cause of morbidity and mortality after allogeneic stem cell transplant (SCT), especially in older patients. We previously showed that host-reactive donor T cells are selectively depleted (SD) from an allograft ex vivo, following a short co-culture of donor cells with irradiated T cell stimulators from the recipient and subsequent treatment with an anti-CD25 immunotoxin. We report a pilot study to test the hypothesis that GVHD could be decreased in a cohort of elderly patients receiving SD allografts from HLA-identical sibling donors. Sixteen patients, median age 65 years (range 51–73), with advanced hematologic malignancies were transplanted following reduced-intensity conditioning with fludarabine and either cyclophosphamide (n=5), melphalan (n=5), or busulfan (n=6). Cyclosporine was used as the only additional GVHD prophylaxis. SD allografts contained a median CD34 dose of 4.5x106/kg (range 3.5–7.3) and an SD CD3 dose of 1.0x108/kg (range 0.2–1.5). Fifteen patients achieved sustained engraftment. The helper T lymphocyte precursor (HTLp) frequency assay demonstrated depletion of host-reactive donor T cells in 9/11 cases tested from a mean of 1/182,089 to 1/822,354 (mean 5.5-fold depletion), while third party responses were conserved. Kaplan-Meier estimates of probability of grade II-IV and grade III-IV acute GVHD were lower than those seen in a historical control group of patients receiving cyclosporine alone for GVHD prophylaxis (35±13% vs. 57±10%, p=0.34) and (7±6% vs. 38±6%, p=0.05), respectively. Of note, the two patients who developed visceral (gut ± liver) GVHD showed ineffective allodepletion by HTLp (figure). Chronic GVHD occurred in five of 14 evaluable patients. At a median follow-up of 212 days (range 60 – 690), seven of sixteen patients remain alive and in remission. Relapse deaths occurred in four patients (refractory AML [2], therapy-related MDS [1], and CMML [1]). Non-relapse mortality in this high-risk cohort of patients included graft failure [1], GVHD [2], infection [1], and myocardial infarction [1]. In summary, CD25-directed allodepletion of stem cell allografts can reduce clinically relevant acute GVHD following matched related donor transplantation. Figure Figure


Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 5167-5167
Author(s):  
Yihuan Chai ◽  
Huiying Qiu ◽  
Hui Lv

Abstract One of the main goals in allogeneic bone marrow(BM) transplantation is the abrogation of graft-versus-host disease (GVHD) with the preservation of antileukemia and antiviral activity. The Study present a selective T cell depletion strategy based on the physical separation of the alloreactive T cells, which were identified by expression of two activation-induced antigens (CD25 and CD69). T cells from C57BL/6(H-2b) mice were first activated with BALB/c (H-2d) recipient spleen cells in a 2-day mixed-lymphocyte-culture (MLC). Following this activation, this compound is selectively depleted based on expression of two activation-induced antigens CD25 and CD69 using magnetic cell sorting. The depleted cells or the untreated cells were then rechallenged respectively in a secondary MLC, with the same stimulator cells or a third-party (DBAH-2k) or tumor- specific (SP2/0, BALB/c-origin myeloma) cells. Cells proliferation were assayed at the indicated time points(1, 2, 3, 4, 5 days). These treated cells or control-cultured cells (2.0×106) mixed with 5.0×106 BM cells from C57BL/6 were transfused respectively by the trail vain into the lethally irradiated BALB/c to observe the survival time, GVHD incidence and pathological analysis. MLC assays demonstrated that this technique led to a significant decrease in alloreactivity of donor cells(29.02~64.17%), which at the same time preserved reactivity against third party cells(49.61~75.69%)and anti-tumor cells(61.14~68.62%). The mice in the group of control-coclutured were died of acute GVHD within 24days. The 7 recipient mice in the treated group were free of acute GVHD, and 3 mice were died of acute GVHD (aGVHD) within 23 days. MACS-based ex-vivo depletion of alloreactive donor T cells based on expression of two activation-induced antigens (CD25 and CD69) could inhibit anti-host responses, by contrast, anti-SP2/O and anti-third-party responses were preserved. Cotransplantation of these selected depleted cells and BM cells could reduce aGVHD.


Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 2310-2310
Author(s):  
Xiang-Yu Zhao ◽  
Ling-Ling Xu ◽  
Sheng-Ye Lu ◽  
Kai-Yan Liu ◽  
Lan-Ping Xu ◽  
...  

Abstract Abstract 2310 Acute GVHD is a proinflammatory process mediated in part by mature donor T cells present in the stem cell or marrow inoculums that are polarized toward a Th1 phenotype and recognize minor or major histocompatibility disparities between the donor and host. A large amount of data has clearly shown that a newly identified subset of interleukin (IL)-17-producing CD4 T lymphocytes, named TH-17 cells, play a crucial role in triggering inflammation and tissue injury in various autoimmune diseases. The role of TH17 cells in acute GVHD had been controversial in recent mice and human transplantation. The aim of this study was to investigate the effects of IL17-producing T cells, including Th17 and Tc17 cells, on GVHD in patients receiving granulocyte colony-stimulating factor (G-CSF)-mobilized peripheral blood stem cell (PBPCs) and G-CSF-primed bone marrow (GBM) transplantation. Forty-one patients were analyzed according to the Th17 and Tc17 cell content in allograft in relation to aGVHD. Furthermore, ten patients with acute GVHD onset were monitored for the presence of Th17 cells by flow cytometry in the peripheral blood. Patients who subsequently developed aGVHD have greater proportions and doses of Th17 and Tc17 cells in GBM and PBPCs allograft infused into the patients (p=0.049 and 0.029 for Th17 in GBM; p=0.078 and p=0.033 for Tc17 in GBM; p=0.103 and 0.008 for Th17 in PBPCs; p=0.007 and 0.001 for Tc17 cells in PBPCs). At the same time, there were also significantly higher proportions and doses of Th1 and Tc1 cells in GBM and PBPCs allograft in patients with aGVHD compared with those levels in patients without aGVHD. Acute GVHD occurred 20 patients occurred, among which were 2 patients with gastrointestinal GVHD, 4 patients with skin plus gastrointestinal GVHD and the 14 others with simple skin GVHD. When we further compared patients according to the aGVHD target organ, we also found the significant association between dose of IL17 producing T cells (Th17 and Tc17) and the occurrence of simple skin GVHD. Cox regression models demonstrated that dose of Th17 in GBM (RR 1.095, CI 1.032– 1.162, P=0.003), dose of Tc17 in PBPCs (RR 1.063, CI 1.017– 1.112, P=0.008) and the number of HLA locus mismatch (RR 1.84, CI 1.18– 2.87, P=0.008) emerged as the independent factors influencing the occurrence of aGVHD. Patients receiving a higher dose of Th17 cells in GBM allograft (>8.5×104/kg, p=0.005), and Tc17 cells in PBPCs (>16.8×104/kg, p=0.001) exhibited a higher incidence of aGVHD. An increased Th17 population (up to 4.99% of CD4 T lymphocytes) was observed in patients with acute GVHD onset. In contrast, the percentage of Th17 cells drastically decreased in GVHD patients when they were treated to achieve partial and complete remission (p=0.013 and p=0.008, respectively). All percentages of Th17 and Tc17 were significantly reduced after G-CSF in vivo application. Our results suggest IL-17 producing T cells contribute to mediate aGVHD. Furthermore, G-CSF in vivo application helps to reduce the occurrence of aGVHD through reducing the secretion of IL17 in T cells. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. 451-451 ◽  
Author(s):  
Arnab Ghosh ◽  
Marco L. Davila ◽  
Lauren F. Young ◽  
Christopher Kloss ◽  
Gertrude Gunset ◽  
...  

Abstract Abstract 451 Chimeric antigen receptors (CAR) represent a potent strategy to target T cells against selected tumor antigens. Ongoing clinical trials indicate that autologous T cells expressing CARs targeting CD19, a B cell-associated antigen, can induce complete remission and B cell aplasia in patients with B cell malignancies. Donor CD19-CAR+ T cells could potentially be used to treat recipients undergoing allogeneic hematopoietic stem cell transplantation (allo-HSCT), but the risk of alloreactivity mediated by endogenous T cell receptors (TCR) triggering an acute GVHD is not known. This is partly due to the absence of in vivo models to study the relative effects of CAR and endogenous TCR signaling. For the first time, we have evaluated the relative effects of CD19-targeted donor T cells on the elimination of CD19+ B cells and endogenous TCR-mediated alloreactivity in mouse models of allo-HSCT. We generated a panel of retroviral vectors encoding mouse CD19-specific CARs: as a control, CD19-delta, a tail-less CAR lacking the CD3ζ signaling domain; CD19z1, which signals through its CD3ζ endodomain; and CD19-28z, which signals through CD28 and CD3ζ (Figure 1A). CD19z1+ and CD19-28z+ T cells mediated specific lysis of CD19-expressing tumors in vitro, while CD19-delta+ T cells did not. In order to assess the anti-tumor capacity of CD19-CAR+ T cells in vivo, we transferred the transduced B6 donor T cells into lethally irradiated BALB/c recipients that were administered T cell-depleted allografts and CD19+ lymphoma A20-TGL (B6–> BALB/c+A20-TGL). CD19-CAR+ T cells (CD19z1 and CD19-28z) mediated clearance of A20 tumor cells visualized by in vivo imaging of luciferase-expressing tumor cells (Figure 1B and data not shown) and significantly improved tumor free survival. CD19-CAR+ B6 T cells could sustain prolonged B cell hypoplasia when adoptively transferred into lethally irradiated haploidentical CBF1 recipients of T cell-depleted allografts (B6–> CBF1, Figure 1C). These data indicate that under alloreactive conditions, donor CD19-CAR+ T cell signaled through the CAR leading to specific elimination of CD19+ tumors and B lineage cells. In order to determine the risk of GVHD, we transferred the donor CD19-CAR+ T cells into haploidentical HSCT recipients. Interestingly, CD19-CAR+ T cells mediated significantly less acute GVHD, resulting in improved survival and lower GVHD scores (Figure 1D). Donor CD19-delta+ T cells however mediated lethal GVHD, indicating that the endogenous TCR mediated strong alloreactivity in the absence of CAR signaling. Similar results were obtained from experiments using MHC-mismatched (B6–> BALB/c) models. It is known that signaling through endogenous TCR is accompanied by down-regulation of surface TCR expression. We found significant decreases in surface CD3ϵ, TCRβ and CD90 expressions in donor CD19-delta+ T cells under alloreactive conditions. In contrast, donor CD1928z+ T cells failed to down-regulate surface TCR expression under similar conditions, suggesting that endogenous TCR function was altered in CAR-activated T cells. In the context of allo-HSCT, preferential CAR signaling at the expense of alloreactive endogenous TCR signaling may thus lead to reduced alloreactivity and attenuation of GVHD. These results provide the first pre-clinical evidence suggesting that CAR-modified, unselected donor T cells may be safely applied in an allogeneic context. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. 1101-1101
Author(s):  
Mohammad Sohrab Hossain ◽  
Ghada M Kunter ◽  
Vicky Fayez Najjar ◽  
David L. Jaye ◽  
Edmund K. Waller

Abstract Donor T-lymphocytes are effective adoptive immunotherapy in the context of allogeneic hematopoietic stem cell transplantation (allo-HSCT), but life threatening complications related to GVHD limits its clinical application. Recent advancement in the field of immunotherapy has directed our interest to enhancing the anti-tumor response of donor T cells by modulating expression of checkpoint blockade molecules including programmed death-1 (PD-1), cytotoxic T-lymphocyte associated antigen-4 (CTLA-4) and foxp3, the transcription factor associated with regulatory T cells. The two ligands of PD-1, PD-L1 or PD-L2 are highly expressed in the presence of inflammatory signal induced by infection or cancer and PD-1/PD-L1 interaction negatively regulates T-cell antigen receptor (TCR) signaling and dampen T cell cytotoxic activity. Herein, we studied the role of PD-1, CTLA-4 and transcription factor foxp3 expressing donor CD4+ and CD8+ T cells in the development of GVHD. Methods: We have used two established allo-HSCT murine GvHD models. Lethally irradiated wild type (WT) B6, PD-L1 knock out (KO) B6 and PD-L2 KO B6 mice were transplanted with 2 x 106 splenic T cells and 2 x 106 T cell depleted bone marrow (TCD BM) cells from H-2Kdonors. Lethally irradiated CB6F1 recipients were similarly transplanted with splenocytes and TCD BM cells from B6 donors. Acute GvHD scores were determined by combining scores obtained from histological tissue sections and weight-loss, posture, activity, fur texture and skin integrity following standard published procedures. The activation status of donor T-cells and BM and host-derived non-T cells in GvHD target organs was analyzed by flow cytometry. Data from allo-HSCT recipients were compared with the respective data obtained from B6 à B6 syngenic HSCT (syn-HSCT) recipients. Serum cytokines were determined by Luminex assay. Results: PD-L1 KO B6 allo-HSCT recipients had significantly increased acute GvHD scores compared with WT B6 allo-HSCT recipients (p<0.0005) and B6 PD-L2 KO allo-HSCT recipients (p<0.0005) measured on day 8 after transplant. All PD-L1 KO allo-HSCT recipients died within 10 days post transplant while WT B6 and PD-L2 KO allo-HSCT recipients had 20% mortality until 36 days post transplant. Increased acute GvHD was associated with increased amount of serum inflammatory cytokines and increased numbers of activated PD-1+CD69+CD4+ donor T cells. Interestingly, PD-1 expression on donor CD4+ T cells significantly increased in the spleen of transplant recipients but not in BM, while PD-1 expression was significantly increased on donor CD8+ T cells in both spleen and BM compartments of allo-HSCT recipients compared with the syn-HSCT recipients. CTLA-4 expression on CD4+ and CD8+ donor T cells were significantly increased in spleen in the first two weeks post transplant but decreased at later time points compared with syn-HSCT. Again, CTLA-4 expression on CD4+ donor T cells in the BM remained significantly higher measured on 100+ days post transplant in allo-HSCT recipients compared with the syn-HSCT but similar levels of CTLA-4 expression on CD8+ T cells were measured in BM between these two HSCT recipients. Foxp3 expression on donor T cells and the numbers of CD4+CD25+foxp3+ regulatory T (Tregs) were markedly suppressed in donor T cells on day 4 post HSCT of allo-HSCT recipients compared with the syn-HSCT recipients. Although total numbers of donor T cells in the spleen of allo-HSCT recipients remained low over time, the percentage of PD-L1-expressing donor T cells in spleen were significantly higher (p<0.005) at early time points (day 4) in allo-HSCT recipients compared with the syn-HSCT. While total numbers of host-derived cells in spleen decreased over time in mice that developed GvHD, host-derived PD-L1 expressing CD3+ T cells persisted at higher levels through day 36 post transplant. Additionally, PD-L1 expression was also increased in donor BM-derived T cells and non-T cells populations over time. Collectively, these data indicate that severe GvHD occurs in allo-HSCT recipients in spite of increased numbers of PD-1, CTLA-4 and PD-L1 expressing donor and host cells. The occurrence of severe GvHD in these allo-HSCT models systems was associated with markedly reduced levels of CTLA-4 and foxp3 transcription factor expressing Tregs indicating that these pathways may be more relevant to controlling GvHD than PD-1:PD-L1 expression. Disclosures No relevant conflicts of interest to declare.


Blood ◽  
2015 ◽  
Vol 126 (23) ◽  
pp. 1880-1880
Author(s):  
Trisha Dant ◽  
Danny Bruce ◽  
Leshara Fulton ◽  
Michelle West ◽  
Niko Foger ◽  
...  

Abstract Allogeneic stem cell transplant is a standard treatment for patients with high-risk and relapsed myeloid and lymphoid malignancies. However, donor T cells from the stem cell graft mediate graft-versus-host disease (GVHD), which is a common cause of morbidity and mortality for transplant recipients. Our group and others have shown that migration of donor T cells into secondary lymphoid tissue (SLT) and subsequent migration to target organs is critical to the pathogenesis of acute GVHD. The Coronin family of proteins consists of actin-binding proteins, which regulate filament formation by interacting with the Arp2/3 complex. Coronin 1B, a ubiquitously expressed member of the Coronin family, is required for lamellipodial protrusion and effective cell migration. Previous work has not evaluated a role for this protein in the function of T lymphocytes or during acute GVHD. To evaluate the effect of Coronin 1B in acute GVHD pathogenesis, we transplanted B6 T cell depleted bone marrow cells with wild type or Coronin 1B-/- T cells to lethally irradiated B6D2 and BALB/c recipient mice and evaluated clinical score of GVHD and overall survival. B6D2 recipients of Coronin 1B-/- T cells demonstrated 100% survival (Figure 1A. p< .001 as determined by Log-rank (Mantel-Cox) test) and significantly decreased clinical scores after transplant. This was confirmed with improvement in survival in BALB/c recipients of Coronin 1B-/- T cells. Additionally, Coronin 1B-/- T cells were capable of eliminating P815 tumor cells, indicating that loss of Coronin 1B does not inhibit graft-versus-tumor activity. By day 12 post- transplant, all mice receiving bone marrow alone developed tumor compared to none of the mice receiving Coronin 1B-/- T Cells. However, protection was not complete as 40% of Coronin 1B-/- T cell recipients developed tumor by day 23. To determine the effect of Coronin 1B on T cell migration during GVHD, B6D2 recipients were given GFP-expressing wild type or Coronin 1B-/- T cells along with T cell depleted bone marrow. Lymphoid tissue and target organs were harvested and analyzed by flow cytometry or GFP ELISA. We observed decreased accumulation of Coronin 1B-/- CD4+ (Figure 1B. p< .01 as determined by Student's t -test) and CD8+ T cells in the inguinal lymph node, mesenteric lymph node, and the spleen 4 days after transplant with no difference in accumulation in lymphoid tissue on days 7 and 14 after transplant. Additionally, we found decreased accumulation of Coronin 1B-/- donor T cells in the lung, colon and spleen 14 days after transplant (Figure 1C. p< .05 by Student's t -test). We also quantified the amount of cytokine in target organs by ELISA, and observed a decrease in IFN-γ and TNF-α in the colon 14 days after transplant. Our data demonstrate that Coronin 1B-/- T cells elicit reduced GVHD compared to wild type T cells. This was correlated with decreased accumulation of Coronin 1B-/- T cells in SLT early after transplant. These data indicate that targeting the migration of T cells to SLT is a viable approach to prevent acute GVHD. Figure 1. (A) Kaplan Meier curve comparing B6D2 recipients of Coronin 1B-/- T cells and wild type (WT) T Cells. (B) Decreased accumulation of Coronin 1B-/- T Cells 4 Days after transplant. For panels (B) and (C) black bars indicate recipients of WT T cells while red bars indicate recipients of Coronin 1B-/- T cells. Inguinal lymph nodes (ILN) were pooled from n=5 mice from each group. Spleens were analyzed individually. GFP expressing donor cells were analyzed by flow cytometry. Representative image of two experiments. (C) Coronin 1B-/- T cells express decreased accumulation in the lung, colon and spleen 14 days after transplant. Target organs were analyzed by GFP ELISA to detect GFP+ Donor Cells (n=5 in each group). Figure 1. (A) Kaplan Meier curve comparing B6D2 recipients of Coronin 1B-/- T cells and wild type (WT) T Cells. (B) Decreased accumulation of Coronin 1B-/- T Cells 4 Days after transplant. For panels (B) and (C) black bars indicate recipients of WT T cells while red bars indicate recipients of Coronin 1B-/- T cells. Inguinal lymph nodes (ILN) were pooled from n=5 mice from each group. Spleens were analyzed individually. GFP expressing donor cells were analyzed by flow cytometry. Representative image of two experiments. (C) Coronin 1B-/- T cells express decreased accumulation in the lung, colon and spleen 14 days after transplant. Target organs were analyzed by GFP ELISA to detect GFP+ Donor Cells (n=5 in each group). Disclosures No relevant conflicts of interest to declare.


2014 ◽  
Vol 2014 ◽  
pp. 1-7 ◽  
Author(s):  
Octavio Silva-García ◽  
Juan J. Valdez-Alarcón ◽  
Víctor M. Baizabal-Aguirre

Innate immunity against pathogenic bacteria is critical to protect host cells from invasion and infection as well as to develop an appropriate adaptive immune response. During bacterial infection, different signaling transduction pathways control the expression of a wide range of genes that orchestrate a number of molecular and cellular events to eliminate the invading microorganisms and regulate inflammation. The inflammatory response must be tightly regulated because uncontrolled inflammation may lead to tissue injury. Among the many signaling pathways activated, the canonical Wnt/β-catenin has been recently shown to play an important role in the expression of several inflammatory molecules during bacterial infections. Our main goal in this review is to discuss the mechanism used by several pathogenic bacteria to modulate the inflammatory response through the Wnt/β-catenin signaling pathway. We think that a deep insight into the role of Wnt/β-catenin signaling in the inflammation may open new venues for biotechnological approaches designed to control bacterial infectious diseases.


Blood ◽  
1992 ◽  
Vol 80 (12) ◽  
pp. 2964-2968 ◽  
Author(s):  
JH Antin ◽  
JL Ferrara

We suggest that acute GVHD after marrow transplantation reflects (1) host injury due to the conditioning regimen followed by the production of inflammatory cytokines; (2) stimulation of mature donor T cells in the milieu of increased cell surface expression of leukocyte adhesion molecules and HLA molecules, followed by the autocrine production of IL- 2; and, finally, (3) recruitment and activation of additional mononuclear effector cells from donor marrow progenitors, which produce additional inflammatory cytokines, thus sustaining the response. The second step is critical for the amplification of the systemic inflammatory response, and it is absence in autologous, syngeneic, and T-cell-depleted transplants. These T cells may also contribute to the inflammatory cytokine network. Acute GVHD can occur in the absence of primary tissue injury in such settings as transfusion-related GVHD; however, it is likely that a greater HLA disparity between donor and host is required. We propose that inflammatory cytokine production is the final common pathway of acute GVHD. If this model is correct, control of cytokine dysregulation at any of several points should control GVHD. Further studies of GVHD and investigations of cytokine antagonists (eg, IL-4 or IL-10) or combinations of antagonists such as IL-1ra and soluble TNF receptor or pentoxifylline will allow us to determine the validity of this hypothesis.


Sign in / Sign up

Export Citation Format

Share Document