scholarly journals Discovery of Predictive Gene Signatures for Tumor Sensitivity to MDM2 Inhibition in Development of a Novel MDM2 Inhibitor DS-3032b

Blood ◽  
2016 ◽  
Vol 128 (22) ◽  
pp. 2893-2893 ◽  
Author(s):  
Jo Ishizawa ◽  
Kenji Nakamaru ◽  
Takahiko Seki ◽  
Koichi Tazaki ◽  
Kensuke Kojima ◽  
...  

Abstract Development of MDM2 inhibitors enabled successful induction of p53-mediated apoptosis in tumor cells without a risk of DNA damage. Early clinical trials of MDM2 inhibitors demonstrated proof-of-concept (Andreeff et al., Clin Can Res, 2015). However, a clinical challenge is that not all the tumors bearing wild-type TP53 are sensitive to MDM2 inhibition. We here discovered novel gene profiling-based algorithms for predicting tumor sensitivity to MDM2 inhibition, using DS-3032b, a novel potent MDM2 inhibitor, which is currently in early clinical trials. In vitro inhibitory effects of DS-3032b on MDM2-p53 interaction was demonstrated using the homogeneous time resolved fluorescence (HTRF) assay (IC50 5.57 nM). DS-3032b treatment (30-1000 nM) indeed increased p53 protein in a dose-dependent manner, and also the p53 targets MDM2 and p21, in cancer cell lines with wild-type TP53 (SJSA-1, MOLM-13, DOHH-2, and WM-115), showing around 10-fold potent growth inhibition effects compared to Nutlin-3a (Table 1). The xenograft mouse models with SJSA-1 and MOLM-13 cells showed > 90% reduction in tumor growth with oral administrations of 25 and 50 mg/kg/day. For discovering predictive gene signatures, we performed two different approaches. In the first approach, 240 cell lines available as OncoPanel were treated with DS-3032b, another prototypic MDM2 inhibitor DS-5272, and Nutlin-3a, and determined 62 sensitive and 164 resistant lines, based on GI50s. Using gene expression profiling (GEP) publicly available for all the cell lines, we selected 175 top-ranked genes with highest expression in the 62 sensitive cell lines. We thus defined the average of Z-scores of the 175 gene expression as "sensitivity score". To validate the 175-gene signature, we evaluated in vivo anti-tumor activities of DS-3032b in 13 patient-derived tumor xenografts (melanoma, NSCLC, colorectal and pancreatic cancers). The prediction accuracy, sensitivity, positive predictive value (PPV), and negative predictive value (NPV) were 85, 88, 88 and 80% respectively. As another validation set, 41 primary AML samples were treated with DS-3032b to define the top and bottom one-third most sensitive or resistant samples (14 each), and GEP was performed in every sample. TP53 mutations were detected in 8 specimens by next generation sequencing and confirmed by Sanger sequencing. The 175-gene signature was applied to the AML dataset, and the accuracy, sensitivity, PPV and NPV to predict the 14 sensitive or resistant samples were 79, 93, 72 and 90% respectively. Importantly, this signature was more predictive than the TP53 mutation status alone applied (68, 93, 62 and 86%). (Table 2A-B) In contrast to the cell line-based approach, the second approach defined an AML-specific gene signature. Specifically, we used the same dataset of 41 primary AML samples described above as training and validation set, by performing random forest methods with cross validation. Using a routine way in bioinformatics analysis of classifying gene signature, we first selected the 1500 top-ranked genes with highest expression variance among all the specimens. In addition, p53-related 32 genes that potentially have predictive values were also selected based on the previous reports. Classification was performed using the random forest method to identify a predictive algorithm with the 1500-gene set, 32-gene set or combined 1525-gene set (7 genes were overlapped), thus we found that the 1525-gene set had highest performance than each gene set alone. However, applying this method to all the 41 samples showed inferior predictive performance than applied only to the 33 wild-type TP53 samples (the prediction accuracy, sensitivity, PPV and NPV were 68, 72, 67 and 69%, vs. 77, 82, 75 and 80%).(Table 2C) Finally, we combined each of the two algorithms (Table 2B-C) with TP53 mutation status. Specifically, the samples with TP53 mutations were predicted as resistant, then either of gene signatures was applied to the rest of the samples with wild-type TP53. Predictive performance (Table 2D-E) was improved in both signatures compared to the others, especially showing the highest PPVs (80 and 82%, respectively). Taken together, gene signatures discovered in the present study, by combining with TP53 mutation status, provided new highly predictive algorithms for therapy of MDM2 inhibition. Our findings will be tested in ongoing clinical trials of DS-3032b. Disclosures Nakamaru: Daiichi Sankyo Co., Ltd: Employment. Seki:2Daiichi Sankyo Co., Ltd.: Employment. Tazaki:2Daiichi Sankyo Co., Ltd.: Employment. DiNardo:Celgene: Research Funding; Novartis: Other: advisory board, Research Funding; Abbvie: Research Funding; Agios: Other: advisory board, Research Funding; Daiichi Sankyo: Other: advisory board, Research Funding. Tse:Daiichi Sankyo, Inc.: Employment.

Blood ◽  
2016 ◽  
Vol 128 (22) ◽  
pp. 2931-2931
Author(s):  
Xia Liu ◽  
Jiaji G Chen ◽  
Jie Chen ◽  
Lian Xu ◽  
Nicholas Tsakmaklis ◽  
...  

Abstract Hematopoietic cell kinase (HCK) is a member of the SRC family of tyrosine kinases (SFKs). HCK transcription is aberrantly upregulated in Waldenström's Macroglobulinemia (WM) and Activated B-cell (ABC) subtype Diffuse Large B-cell Lymphoma (DLBCL) in response to activating mutations in MYD88 (Yang et al, Blood 2016). To clarify the mechanism responsible for the aberrant upregulation of HCK transcription inMYD88 mutated cells, we analyzed the promoter sequence of HCK using PROMO and identified consensus binding sites for transcription factors (AP1, NF-kB, STAT3, and IRF1) that are regulated by mutated MYD88 (Ngo et al, Nature 2011; Treon et al, NEJM 2012; Yang et al, Blood 2013; Juilland et al, Blood 2016; Yang et al, Blood 2016). We performed Chromatin Immuno-precipitation (ChIP) assays using ChIP grade antibodies to JunB, c-Jun, NF-kB-p65, STAT3 and IRF1 in MYD88 mutated WM (BCWM.1, MWCL-1) and ABC DLBCL (TMD-8, HBL-1, OCI-Ly3) cells that highly express HCK transcripts, as well as wild type MYD88 expressing GCB DLBCL (OCI-Ly7, OCI-Ly19) cells that show low HCK transcription. Following ChIP, a HCK promoter specific quantitative PCR assay was used to detect HCK promoter sequences. These studies showed that JunB, NF-kB-p65 and STAT3 bound more robustly to the HCK promoter in MYD88 mutated WM and ABC-DLBCL cells versus MYD88 wild type GCB DLBCL cell lines, while c-Jun bound more abundantly to the HCK promoter sequence in all DLBCL cell lines, regardless of MYD88 mutation status. In contrast c-Jun binding was low in MYD88 mutated WM cells. IRF1 binding to the HCK promoter was similar in all cell lines, regardless of the MYD88 mutation status. To further investigate HCK regulation, we developed an HCK promoter driven luciferase reporter vector (WT) with mutated AP-1 binding (AP1-mu-1~6), NF-kB binding (NF-kB-mu-1~5), and STAT3 binding (STAT3-mu) sites and investigated their impact on HCK promoter activity in MYD88 mutated BCWM.1 cells. We observed that mutation of AP1-mu-1,4,5,6; NF-kB-mu-1,4,5, as well as STAT3-mu binding sites greatly reduced HCK promoter activity, thereby supporting a role for AP-1, NF-kB and STAT3 transcription factors in HCK gene expression in MYD88 mutated cells. To further clarify the importance of these transcription factors in aberrant HCK gene expression in MYD88 mutated cells, we treated BCWM.1, MWCL-1, TMD-8 and HBL-1 cells with the AP-1 inhibitor SR 11302; NF-kB inhibitor QNZ; and the STAT3 inhibitor STA-21. Treatment of cells for 2 hours with SR 11302, QNZ, and STA-21 at sub-EC50 concentrations resulted in decreased HCK expression in MYD88 mutated all cell lines. Lastly, we investigated the contribution of BCR signaling to HCK transcription. BCWM.1, MWCL-1, TMD-8, and HBL-1 cells were treated with the Syk kinase inhibitor R406, and HCK transcription levels were then assessed. Differences in HCK expression were observed between MYD88 mutated WM and ABC DLBCL cells following R406, supporting a contributing role for BCR signaling in ABC DLBCL but not WM cells to HCK expression. Our data provide critical new insights into HCK regulation, and a framework for targeting pro-survival HCK signaling in WM and ABC DLBCL cells dependent on activating MYD88 mutations. Disclosures Castillo: Biogen: Consultancy; Otsuka: Consultancy; Millennium: Research Funding; Janssen: Honoraria; Abbvie: Research Funding; Pharmacyclics: Honoraria. Treon:Janssen: Consultancy; Pharmacyclics: Consultancy, Research Funding.


eLife ◽  
2015 ◽  
Vol 4 ◽  
Author(s):  
Dmitriy Sonkin

A number of TP53-MDM2 inhibitors are currently under investigation as therapeutic agents in a variety of clinical trials in patients with TP53 wild type tumors. Not all wild type TP53 tumors are sensitive to such inhibitors. In an attempt to improve selection of patients with TP53 wild type tumors, an mRNA expression signature based on 13 TP53 transcriptional target genes was recently developed (Jeay et al. 2015). Careful reanalysis of TP53 status in the study validation data set of cancer cell lines considered to be TP53 wild type detected TP53 inactivating alterations in 23% of cell lines. The subsequent reanalysis of the remaining TP53 wild type cell lines clearly demonstrated that unfortunately the 13-gene signature cannot predict response to TP53-MDM2 inhibitor in TP53 wild type tumors.


Blood ◽  
2018 ◽  
Vol 132 (Supplement 1) ◽  
pp. 2720-2720 ◽  
Author(s):  
Michael Andreeff ◽  
Weiguo Zhang ◽  
Prasanna Kumar ◽  
Oleg Zernovak ◽  
Naval G. Daver ◽  
...  

Abstract Background: MDM2, a negative regulator of the tumor suppressor p53, is overexpressed in several cancers including hematological malignancies. Disrupting the MDM2-p53 interaction represents an attractive approach to treat cancers expressing wild-type functional p53. Anticancer activity of small molecule MDM2 inhibitor milademetan (DS-3032b) has been demonstrated in preclinical studies and in a phase 1 trial in patients with acute myeloid leukemia (AML) or myelodysplastic syndrome. Quizartinib is a highly selective and potent FLT3 inhibitor that has demonstrated single-agent activity and improvement in overall survival in a phase 3 clinical study in relapsed/refractory AML with FLT3-internal tandem duplication (FLT3-ITD) mutations. We present here the preclinical studies exploring the rationale and molecular basis for the combination of quizartinib and milademetan for the treatment of FLT3-ITD mutant/TP53 wild-type AML. Methods: We investigated the effect of quizartinib and milademetan combination on cell viability and apoptosis in established AML cell lines, including MV-4-11, MOLM-13 and MOLM-14, which harbor FLT3-ITD mutations and wild type TP53. Cells were treated with quizartinib and milademetan at specified concentrations; cell viability and caspase activation were determined by chemiluminescent assays, and annexin V positive fractions were determined by flow cytometry. We further investigated the effect of the combination of quizartinib and the murine specific MDM2 inhibitor DS-5272 in murine leukemia cell lines Ba/F3-FLT3-ITD, Ba/F3-FLT3-ITD+F691L and Ba/F3-FLT3-ITD+D835Y, which harbor FLT3-ITD, ITD plus F691L and ITD plus D835Y mutations, respectively. F691L or D835Y mutations are associated with resistance to FLT3-targeted AML therapy. In vivo efficacy of combination treatment was investigated in subcutaneous and intravenous xenograft models generated in male NOD/SCID mice inoculated with MOLM-13 and MV-4-11 human AML cells. Results: Combination treatment with milademetan (or DS-5272) and quizartinib demonstrated synergistic anti-leukemic activity compared to the respective single-agent treatments in FLT3 mutated and TP53 wild type cells. Combination indices (CIs) were 0.25 ± 0.06, 0.61 ± 0.03, 0.62 ± 0.06, 0.29 ± 0.004 and 0.50 ± 0.03, respectively, in MV-4-11, MOLM-13, MOLM-14, Ba/F3-FLT3-ITD+F691L and D835Y cell lines, all of which harbor FLT3-ITD or ITD plus TKD point mutations. The combination regimen triggered synergistic pro-apoptotic effect in a p53-dependent manner as shown by annexin-V staining and caspase 3/7 assays. Mechanistically, the combination treatment resulted in significant suppression of phospho-FLT3, phospho-ERK and phospho-AKT and anti-apoptotic Bcl2 family proteins (eg, Mcl-1), as well as up-regulation of p53, p21 and pro-apoptotic protein PUMA, compared to single agent treatments. Of note, the combination regimen also exerted a synergistic pro-apoptotic effect on venetoclax (BCL-2 inhibitor)-resistant MOLM-13 cells (CI: 0.39 ± 0.04) through profound suppression of Mcl-1. In an in vivo study using the MOLM-13 subcutaneous mouse xenograft model, quizartinib at 0.5 and 1 mg/kg and milademetan at 25 and 50 mg/kg demonstrated a significant tumor growth inhibition compared with vehicle treatment or respective single-agent treatments. In MV-4-11 intravenous mouse xenograft model, the combination of quizartinib plus milademetan showed a significantly prolonged survival, with no animal death in the combination group during the study period, compared to respective single agent treatments and untreated control (Figure). Conclusion: Synergistic anti-leukemic activity was observed for quizartinib plus milademetan combination treatment in preclinical AML models. A phase I clinical trial of quizartinib/milademetan combination therapy in patients with FLT3-ITD mutant AML is underway. Figure. Effects of quizartinib, milademetan and their combination on survival of mice intravenously inoculated with human MV-4-11 AML cells Disclosures Andreeff: Oncoceutics: Equity Ownership, Membership on an entity's Board of Directors or advisory committees; Jazz Pharma: Consultancy; Aptose: Equity Ownership, Membership on an entity's Board of Directors or advisory committees; Celgene: Consultancy; Eutropics: Equity Ownership, Membership on an entity's Board of Directors or advisory committees; Amgen: Consultancy, Research Funding; United Therapeutics: Patents & Royalties: GD2 inhibition in breast cancer ; Oncolyze: Equity Ownership; Astra Zeneca: Research Funding; Reata: Equity Ownership; Daiichi-Sankyo: Consultancy, Patents & Royalties: MDM2 inhibitor activity patent, Research Funding; SentiBio: Equity Ownership. Kumar:Daiichi Sankyo: Employment, Equity Ownership. Zernovak:Daiichi Sankyo: Employment, Equity Ownership. Daver:Pfizer: Research Funding; ImmunoGen: Consultancy; Otsuka: Consultancy; Karyopharm: Research Funding; Alexion: Consultancy; ARIAD: Research Funding; Daiichi-Sankyo: Research Funding; BMS: Research Funding; Karyopharm: Consultancy; Novartis: Consultancy; Novartis: Research Funding; Incyte: Research Funding; Kiromic: Research Funding; Sunesis: Research Funding; Incyte: Consultancy; Pfizer: Consultancy; Sunesis: Consultancy. Isoyama:Daiichi SANKYO CO., LTD.: Employment. Iwanaga:Daiichi Sankyo Co., Ltd.: Employment. Togashi:Daiichi SANKYO CO., LTD.: Employment. Seki:Daiichi Sankyo Co., Ltd.: Employment.


Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. 3642-3642
Author(s):  
Eugen Dhimolea ◽  
Emily King ◽  
Michal Sheffer ◽  
Yiguo Hu ◽  
Subhashis Sarkar ◽  
...  

Abstract In multiple myeloma (MM) and other neoplasias, several kinases have been extensively evaluated as potential therapeutic targets using RNAi-based approaches or pharmacological inhibitors. Attempts to map the functional dependence of MM cells on individual kinases have primarily utilized RNAi, a mechanistic approach inherently dissimilar to small molecule inhibitors that are applied in the clinic. For many of these oncogenic kinases, large numbers of such inhibitors have been designed: these inhibitors often exhibit very similar effect on their primary designated target(s), but also perturb other secondary kinases, which may vary for different inhibitors within the same class. Using large sets of such inhibitors can enable comparative analyses to reveal the functional roles of both the respective primary target(s), as well as non-overlapping secondary targets. We therefore pursued the functional mapping of the kinome dependencies of 16 MM cell lines, using a panel of 273 kinase inhibitors (100nM, 24-72 h exposure), which target a total of 43 known primary oncogenic targets. In this study, we observed universally potent activity of Aurora (n=18 compounds), PLK (n=5), and mTORC1/2 (n=20) inhibitors; this observation is consistent with the high proliferative rate of MM cell lines in vitro. In contrast, we observed modest to minimal cell-autonomous susceptibility of MM cells to selective inhibitors of PDK1, PI3K (excluding those that also inhibit mTOR), and Akt: this suggests that PDK1- and Akt-independent mechanisms mediate the effect of PI3K signaling on the survival of most of these cell lines. In addition, we observed lack of response in virtually all tested cell lines to inhibitors of c-met (n=17 inhibitors), ALK (n=2), EGFR superfamily members (EGFR, HER2; n=25 inhibitors), c-kit (n=3), PDGFR(n=5), VEGFR (n=21), Flt3 (n=7), FAK (n=2), Syk (n=5), Src (n=5) and BTK: this result was observed even in those cell lines with detectable transcript against the respective kinases. Notable exceptions to this pattern were inhibitors that, in addition to their primary target, also possess activity to other kinases with known roles in MM (e.g. potent activity of FAK or ALK inhibitors that also target IGF1R, such as TAE226 and GSK1838705A, respectively). Consistent with prior experience, several FGFR3 inhibitors showed modest activity against FGFR3- expressing cell lines (e.g. KMS11, KMS18, OPM2, KMS34). Our screen also revealed several previously underappreciated classes of inhibitors with "non-consensus", heterogeneous, activity across the tested MM cell lines. For instance, we identified 3 clusters of cell lines with high (e.g. AMO1, Karpas-620); intermediate (e.g. KMS20, MM1S), and low responsiveness, to 8 different MEK1/2 inhibitors. Notably, both Karpas-620 and AMO1 cells are KRAS-mutant, BRAF-wild-type and have inherently high levels of p-ERK; while AMO1 cells also harbor a MEK2-Q60P mutation, previously reported to positively regulate the kinase domain activity of MEK2 and induce resistance of BRAF-V600E mutant melanoma cells to MEK1/2 inhibitors. These results raise the possibility that the response to MEK1/2 inhibitors and the role of specific mutations, such as MEK2-Q60P, are tumor-type dependent and/or influenced by concurrent BRAF mutation status. Notably, BRAF inhibitors (n=7) were inactive as cytoreductive agents against our cell line panel of BRAF wild-type cells; while several MM cell lines exhibited significantly increased proliferation upon treatment with these inhibitors. This stimulation has been previously noted in melanoma and has been attributed to activation and signaling through C-RAF; it also suggests that treatment of MM patients harboring both V600E-BRAF mutant and wild-type clones with BRAF inhibitor may decrease the burden of the former clone(s), but select for outgrowth of the latter. In summary, our studies establish the value of using large libraries of small-molecule kinase inhibitors in phenotypic assays against panels of tumor cell lines, as an approach to functionally annotate the kinome dependencies across a given neoplasia, such as MM. Furthermore, our studies provide insight into the possible clinical implications that specific molecular lesions (e.g. mutation status of MEK2 or BRAF) can have on the individualized administration of kinase inhibitors targeting the respective pathway. Disclosures Mitsiades: Millennium Pharmaceuticals: Consultancy, Honoraria; Celgene: Consultancy, Honoraria; Amgen: Research Funding; Johnson & Johnson: Research Funding.


2019 ◽  
Vol 21 (Supplement_3) ◽  
pp. iii32-iii32
Author(s):  
H Noor ◽  
R Rapkins ◽  
K McDonald

Abstract BACKGROUND Tumour Protein 53 (TP53) is a tumour suppressor gene that is mutated in at least 50% of human malignancies. The prevalence of TP53 mutation is much higher in astrocytomas with reports of up to 75% TP53 mutant cases. Rare cases of TP53 mutation also exist in oligodendroglial tumours (10–13%). P53 pathway is therefore an important factor in low-grade glioma tumorigenesis. Although the prognostic impact of TP53 mutations has been studied previously, no concrete concordance were reached between the studies. In this study, we investigated the prognostic effects of TP53 mutation in astrocytoma and oligodendroglioma. MATERIAL AND METHODS A cohort of 65 matched primary and recurrent fresh frozen tumours were sequenced to identify hotspot exons of TP53 mutation. Exons 1 to 10 were sequenced and pathogenic mutations were mostly predominant between Exons 4 and 8. The cohort was further expanded with 78 low grade glioma fresh frozen tissues and hotspot exons were sequenced. Selecting only the primary tumour from 65 matched tumours, a total of 50 Astrocytoma cases and 51 oligodendroglioma cases were analysed for prognostic effects of TP53. Only pathogenic TP53 mutations confirmed through COSMIC and NCBI databases were included in the over survival and progression-free survival analysis. RESULTS 62% (31/50) of astrocytomas and 16% (8/51) of oligodendrogliomas harboured pathogenic TP53 mutations. Pathogenic hotspot mutations in codon 273 (c.817 C>T and c.818 G>A) was prevalent in astrocytoma with 58% (18/31) of tumours with these mutations. TP53 mutation status was maintained between primary and recurrent tumours in 93% of cases. In astrocytoma, overall survival of TP53 mutant patients was longer compared to TP53 wild-type patients (p<0.01) but was not significant after adjusting for age, gender, grade and IDH1 mutation status. In contrast, astrocytoma patients with specific TP53 mutation in codon 273 showed significantly better survival compared to other TP53 mutant and TP53 wild-type patients combined (p<0.01) in our multivariate analysis. Time to first recurrence (progression-free survival) of TP53 mutant patients was significantly longer than TP53 wild-type patients (p<0.01) after adjustments were made, while TP53 mutation in codon 273 was not prognostic for progression-free survival. In oligodendroglioma patients, TP53 mutations did not significantly affect overall survival and progression-free survival. CONCLUSION In agreement with others, TP53 mutation is more prevalent in Astrocytoma and mutations in codon 273 are significantly associated with longer survival.


Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 2569-2569
Author(s):  
Alberto J Arribas ◽  
Sara Napoli ◽  
Eugenio Gaudio ◽  
Luciano Cascione ◽  
Alessandra Di Veroli ◽  
...  

Background . PI3Kδ is expressed in B-cells and has a central role in the B-cell receptor signaling in B-cell derived malignancies. Idelalisib was the first-in-class PI3Kδ inhibitors and several second-generation compounds are undergoing clinical investigation as single agents and in combinations. To identify modalities to overcome the resistance that develops to this class of agents, we have developed two idelalisib-resistant models derived from splenic marginal zone lymphoma (SMZL) cell lines. Materials and Methods. Cells were kept under idelalisib (IC90) until acquisition of resistance (RES) or with no drug (parental, PAR). Stable resistance was confirmed by MTT assay after 2-weeks of drug-free culture. Multi-drug resistance phenotype was ruled out. Cells underwent transcriptome and miRNA profiling by RNA-Seq, whole exome sequencing (WES), lipidomics profiling, pharmacological screening (348 compounds), and FACS analysis. Cytokines and growth factor secretion was performed by ELISA. Results. Two RES models were obtained from VL51 and Karpas1718 with 7-10 fold times higher IC50s than PAR counterparts. In both models, conditioned media from RES cells transferred the resistance in the PAR cells. While WES did not identify somatic mutations associated with resistance, RNA-Seq and lipidomics analyses showed that the two cell lines had developed resistance activating different modalities. The VL51 RES model showed an enrichment in BCR-TLR-NFkB (TLR4, CD19, SYK), IL6-STAT3 (IL6, CD44), chemokines (CXCL10, CXCR4, CXCR3) and PDGFR (PDGFRA, PRKCE) signatures, paired with increased p-AKT and p-BTK levels, decreased cardiolipins and sphingomyelins levels, and increased levels of specific triacylglycerols and glycerophosphocholines. In particular, there was an over-expression of surface expression of PDGFRA and secretion of IL6 in the medium. Silencing of both IL6and PDGFRA by siRNAs reverted the resistance, while the silencing of the individual genes had only a partial effect. These data were paired with the acquired sensitivity to the PDGFR inhibitor masitinib, identified in the pharmacologic screening. In the Karpas1718 model, we observed an increased p-AKT activity with an enrichment for B-cell activation signatures (RAG1, RAG2, TCL1A), proliferation (E2F2, MKI67), ERBB signaling (HBEGF, NRG2, ERRB4), increased levels of some triacylglycerols and repressed levels for specific glycerophosphocholines. HBEGF secretion was confirmed by ELISA. The addition of recombinant HBEGF to the medium induced resistance in the PAR cells. Combination with the pan ERBB inhibitor lapatinib was beneficial in the K1718 RES. Recombinant HBEGF also induced resistance to the BTK inhibitor ibrutinib in the PAR cells and in the mantle cell lymphoma SP-53 cell line. Specific members of the let-7 family of miRNAs were repressed in the RES lines derived from both cell lines, indicating the involvement of miRNA deregulation in the mechanism of resistance. Indeed, let-7 members are known to directly target IL6-STAT3 and cytokine signaling cascade, as well PI3K-AKT network. In solid tumors, let-7 members are also expressed at low levels in tumors with constitutive active ERBB signaling, in accordance with the activation of ERBB pathway and p-AKT we observed in our Karpas1718model. Experiments with a LIN28B inhibitor are now on-going. Finally, we validated the findings across a panel of 34 B-cell lymphoma cell lines, in which IL6, PDGFRA, HBEGF and LIN28 expression levels were negatively correlated with idelalisib sensitivity, while the latter was positively correlated with let-7 levels (P <0.05). Conclusions. We developed two distinct models derived from MZL of secondary resistance to the PI3Kδ inhibitor idelalisib. We identified treatments that might overcome resistance to idelalisib and are worth of further investigations. The two models, driven by different biologic processes, will allow the evaluation of further alternative therapeutic approaches. Disclosures Stathis: PharmaMar: Other: Renumeration; ADC Therapeutics: Other: Institutional research funding; Abbvie: Other: Renumeration; Bayer: Other: Institutional research funding; Novartis: Other: Institutional research funding; MEI-Pharma: Other: Institutional research funding; Roche: Other: Institutional research funding; Pfizer: Other: Institutional research funding; Merck: Other: Institutional research funding. Stuessi:Gilead: Speakers Bureau. Zucca:Gilead: Honoraria, Other: travel grant. Rossi:Gilead: Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding; Abbvie: Honoraria, Other: Scientific advisory board; Janseen: Honoraria, Other: Scientific advisory board; Roche: Honoraria, Other: Scientific advisory board; Astra Zeneca: Honoraria, Other: Scientific advisory board. Bertoni:Nordic Nanovector ASA: Research Funding; Acerta: Research Funding; Jazz Pharmaceuticals: Other: travel grants; ADC Therapeutics: Research Funding; Bayer AG: Research Funding; Cellestia: Research Funding; CTI Life Sciences: Research Funding; EMD Serono: Research Funding; Helsinn: Consultancy, Research Funding; ImmunoGen: Research Funding; Menarini Ricerche: Consultancy, Research Funding; NEOMED Therapeutics 1: Research Funding; Oncology Therapeutic Development: Research Funding; PIQUR Therapeutics AG: Other: travel grant, Research Funding; HTG: Other: Expert Statements ; Amgen: Other: travel grants; Astra Zeneca: Other: travel grants.


2020 ◽  
Author(s):  
Mohamed Elshaer ◽  
Ahmed Hammad ◽  
Xiu Jun Wang ◽  
Xiuwen Tang

Abstract BackgroundKEAP1-NRF2 pathway alterations were identified in many cancers including, esophageal cancer (ESCA). Identifying biomarkers that are associated with mutations in this pathway will aid in defining this cancer subset; and hence in supporting precision and personalized medicine. MethodsIn this study, 182 tumor samples from the Cancer Genome Atlas (TCGA)-ESCA RNA-Seq V2 level 3 data were segregated into two groups KEAP1-NRF2-mutated (22) and wild-type (160).The two groups were subjected to differential gene expression analysis, and we performed Gene Set Enrichment Analysis (GSEA) to determine all significantly affected biological pathways. Then, the enriched gene set was integrated with the differentially expressed genes (DEGs) to identify a gene signature regulated by the KEAP1-NRF2 pathway in ESCA. Furthermore, we validated the gene signature using mRNA expression data of ESCA cell lines provided by the Cancer Cell Line Encyclopedia (CCLE). The identified signature was tested in 3 independent ESCA datasets to assess its prognostic value.ResultsWe identified 11 epithelial-mesenchymal transition (EMT) genes regulated by the KEAP1-NRF2 pathway in ESCA patients. Five of the 11 genes showed significant over-expression in KEAP1-NRF2-mutated ESCA cell lines. In addition, the over-expression of these five genes was significantly associated with poor survival in 3 independent ESCA datasets, including the TCGA-ESCA dataset.ConclusionAltogether, we identified a novel EMT 5-gene signature regulated by the KEAP1-NRF2 axis and this signature is strongly associated with metastasis and drug resistance in ESCA. These 5-genes are potential biomarkers and therapeutic targets for ESCA patients in whom the KEAP1-NRF2 pathway is altered.


Blood ◽  
2016 ◽  
Vol 128 (22) ◽  
pp. 225-225 ◽  
Author(s):  
Valeria Santini ◽  
Pierre Fenaux ◽  
Aristoteles Giagounidis ◽  
Uwe Platzbecker ◽  
Alan F List ◽  
...  

Abstract Background: Somatic gene mutations occur in the majority of MDS pts; specific mutations and high mutation frequency have prognostic relevance (Papaemmanuil et al. Blood. 2013;122:3616-27). Evaluation of somatic mutations may support the diagnosis of MDS and guide treatment (Tx) selection. The phase 3 randomized MDS-005 study compared LEN and placebo (PBO) Tx in red blood cell transfusion-dependent (RBC-TD) non-del(5q) lower-risk MDS pts ineligible for or refractory to ESAs. Deletions in chromosome 5q are associated with a high response rate to LEN in MDS pts; however, no mutations have been definitively associated with a predictable clinical response to LEN in non-del(5q) MDS. Aim:To investigate the relationship between somatic gene mutations detected by targeted next-generation sequencing (NGS) and response and overall survival (OS) in lower-risk non-del(5q) MDS pts treated with LEN in the MDS-005 study. Methods: Eligible pts were: RBC-TD (≥ 2 units packed RBCs/28 days 112 days immediately prior to randomization) with International Prognostic Scoring System defined Low-/Intermediate-1-risk non-del(5q) MDS; ineligible for ESA Tx (serum erythropoietin > 500 mU/mL); or unresponsive or refractory to ESAs (RBC-TD despite ESA Tx with adequate dose and duration). 239 pts were randomized 2:1 to oral LEN 10 mg once daily (5 mg for pts with creatinine clearance 40-60 mL/min) or PBO. DNA was isolated from bone marrow mononuclear cells or whole blood collected at screening from a subset of pts who gave informed consent for this exploratory biomarker analysis and had adequate tissue for analysis. Targeted NGS of 56 genes was performed at Munich Leukemia Laboratory; average sequencing coverage was 2,000-5,000-foldand the variant allele frequency detection cutoff was 3%. Target regions varied by gene, including all exons to hotspots. For association tests, mutant variants (heterozygous or homozygous) were scored as 1 (mutant) or 0 (wildtype) for gene-level analyses. A Fisher exact test was used to test association of mutation status with response. Median OS was calculated by the Kaplan-Meier method. Hazard ratios and 95% confidence intervals were determined by a non-stratified Cox proportional hazards model. A log-rank test was used to test treatment effect with OS for single gene mutation status. Results: The biomarker cohort included 198 of 239 pts (83%; LEN n = 130, PBO n = 68). At least 1 mutation was detected in 30/56 (54%) genes and 173/198 (87%) pts. The most frequently mutated genes were SF3B1 (59%), TET2 (33%), ASXL1 (23%), and DNMT3A (14%); the most frequent co-mutations were SF3B1/TET2 (23%), SF3B1/DNMT3A (10%), SF3B1/ASXL1 (10%), and TET2/ASXL1 (9%) (Figure). Of 116 pts with SF3B1 mutations, 115 (99%) had ≥ 5% ring sideroblasts. The 56-day RBC transfusion-independence (RBC-TI) response rate was significantly lower in LEN-treated ASXL1 mutant pts vs wildtype pts (10% vs 32%, respectively; P = 0.031). At 168 days, the RBC-TI response rate was still lower in LEN-treated ASXL1 mutant pts vs wildtype pts (7% vs 22%); however, the difference was not significant (P = 0.101). LEN-treated DNMT3A mutant pts had a higher 56-day RBC-TI response rate vs wildtype pts (44% vs 25%); however, this difference did not reach significance (P = 0.133) due to the small sample size. RBC-TI response rate with LEN was similar regardless of total number of mutations per pt. Higher numbers of mutations were significantly associated (P = 0.0005) with worse median OS. Mutation in any of the genes associated with a negative prognosis reported by Bejar et al. (N Engl J Med. 2011;346:2496-506) was also significantly associated (P = 0.0003) with worse median OS.However, OS was not significantly different in LEN- vs PBO-treated pts based on any single gene mutation status. Conclusions: In this group of lower-risk RBC-TD non-del(5q) MDS pts, somatic mutations in genes recurrently mutated in myeloid cancers were detected in 87% of pts. SF3B1 mutations (alone or in combination) were most frequent and not associated with response to LEN. ASXL1 mutant pts had a significantly lower LEN response rate vs wildtype pts, whereas DNMT3A mutant pts had a trend for improved LEN response. Median OS was influenced by mutations, but not significantly modified by LEN. Determining predictive clinical markers for Tx response in non-del(5q) MDS pts remains challenging; nevertheless, there is a significant need to identify pt subsets who may be responsive to LEN Tx. Figure. Figure. Disclosures Santini: Novartis: Consultancy, Honoraria; Amgen: Other: advisory board; Onconova: Other: advisory board; Celgene: Consultancy, Honoraria, Research Funding; Janssen: Consultancy, Honoraria; Astex: Other: advisory board. Fenaux:Celgene, Janssen, Novartis, Astex, Teva: Research Funding; Celgene, Novartis, Teva: Honoraria. Giagounidis:Celgene Corporation: Consultancy. Platzbecker:Janssen-Cilag: Honoraria, Research Funding; Novartis: Honoraria, Research Funding; Celgene Corporation: Honoraria, Research Funding; Amgen: Honoraria, Research Funding; TEVA Pharmaceutical Industries: Honoraria, Research Funding. Zhong:Celgene Corporation: Employment, Equity Ownership. Wu:Celgene Corporation: Employment, Equity Ownership. Mavrommatis:Discitis DX: Membership on an entity's Board of Directors or advisory committees; Celgene Corporation: Employment, Equity Ownership. Beach:Celgene Corporation: Employment, Equity Ownership. Hoenekopp:Celgene Corporation: Employment, Equity Ownership. MacBeth:Celgene Corporation: Employment, Equity Ownership, Patents & Royalties, Research Funding.


Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 273-273
Author(s):  
Salomon Manier ◽  
John T Powers ◽  
Antonio Sacco ◽  
Michaela R Reagan ◽  
Michele Moschetta ◽  
...  

Abstract Background MicroRNAs (miRNAs) play a pivotal role in tumorigenesis, due to their ability to target mRNAs involved in the regulation of cell proliferation, survival and differentiation. Lin28B is an RNA binding protein that regulates Let-7 miRNA maturation. Lin28B and Let-7 have been described to act as oncogenes or tumor suppressor genes, respectively, as demonstrated both in solid cancer and hematologic malignancies. However, the role of the Lin28B/Let-7 axis in Multiple Myeloma (MM) has not been studied. Method Lin28B level expression in MM patients was studied using previously published gene expression profiling (GEP) datasets. Let-7 expression levels were assessed in CD138+ primary MM cells and bone marrow stromal cells (BMSCs) by using PCR, as well as in circulating exosomes using miRNA array (Nanostring® Technology). Exosomes were collected from both normal and MM peripheral blood, using ultracentrifugation; and further studied by using electron microscopy and immunogold labeling for the detection of CD63 and CD81. The knockdown of Lin28B was performed on MM cell lines (U266, MM.1S, MOLP-8) by using a lentiviral Lin28B shRNA. Gain- and loss-of function studies for Let-7 were performed using Let-7 mimic and anti-Let-7 transfection in MM cell lines (MM1S, U266) and primary BMSCs. Cell proliferation has been evaluated by using thymidine assays. Effects of Let-7 and Lin28B on signaling cascades have been evaluated by western blot. Results Two independent GEP datasets (GSE16558; GSE2658) were analyzed for Lin28B expression, showing a significantly higher level in MM patients compared to healthy controls. In addition, high Lin28B levels correlated with a shorter overall survival (p = 0.0226). We next found that the Let-7 family members are significantly down-regulated in MM primary cells, particularly Let-7a and b (5 fold change, p < 0.05), as demonstrated by using qRT-PCR. Similarly, miRNA arrays showed a lower expression of Let-7-related miRNAs in circulating exosomes obtained from MM patients compared to healthy individuals. We further dissected the functional relevance of Lin28B in MM cells, by performing Lin28 knockdown (KD) in MM cell lines (U266, MOLP-8). This led to a significant decrease in MM cell proliferation associated with G1 phase cell cycle arrest. This was supported by up-regulation of Let-7 and down-regulation of c-Myc, Ras and Cyclin D1 in Lin28 KD MM cells. To further prove that Lin28B-dependent effects on MM cells are mediated by Let7, we next showed that let-7 gain- and loss-of-function studies regulate MM cell proliferation and Myc expression. Lin28B regulation in MM cells is dependent on Let-7, as demonstrated by an increase of both cell proliferation and c-Myc expression after anti-Let-7 transfection in the Lin28B KD cells. We therefore studied the regulation of Let-7 in MM cells through the interaction with BMSCs. Let-7 expression levels were significantly lower in BMSCs obtained from MM patients compared to healthy donors. Interestingly, the Let-7 expression level in MM cells was increased after co-culture with Let-7 over-expressing BMSCs, associated with a decrease of both cell proliferation and c-Myc expression. This suggests a potential transfer of Let-7 from BMSCs to MM cells. Conclusion This work describes a new signaling pathway involving Lin28B, Let-7, Myc and Ras in MM. Let-7 expression in MM cells is also regulated through the interaction of MM cells with BMSCs, leading to cell proliferation and Myc regulation in MM. Interference with this pathway might offer therapeutic perspectives. Disclosures: Leleu: CELGENE: Honoraria; JANSSEN: Honoraria. Daley:Johnson and Johnson: Consultancy, Membership on an entity’s Board of Directors or advisory committees; MPM Capital: Consultancy, Membership on an entity’s Board of Directors or advisory committees; Verastem: Consultancy, Membership on an entity’s Board of Directors or advisory committees; Epizyme: Consultancy, Membership on an entity’s Board of Directors or advisory committees; iPierian: Consultancy, Membership on an entity’s Board of Directors or advisory committees; Solasia, KK: Consultancy, Membership on an entity’s Board of Directors or advisory committees. Ghobrial:Onyx: Advisoryboard Other; BMS: Advisory board, Advisory board Other, Research Funding; Noxxon: Research Funding; Sanofi: Research Funding.


Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 275-275
Author(s):  
Siobhan Glavey ◽  
Salomon Manier ◽  
Antonio Sacco ◽  
Michaela R Reagan ◽  
Yuji Mishima ◽  
...  

Abstract Background Glycosylation is a stepwise procedure of covalent attachment of oligosaccharide chains to proteins or lipids, and alterations in this process, especially increased sialylation, have been associated with malignant transformation and metastasis. The adhesion and trafficking of multiple myeloma (MM) cells is strongly influenced by glycosylation and multiple myeloma cells express a variety of adhesion molecules, including selectin ligands and integrins, which are typically dependent on glycosylation for their function. We have previously reported that the sialyltransferase ST3GAL6 is up-regulated in plasma cells from MM patients and that increased expression is associated with inferior overall survival (OS) in MM gene expression profiling (GEP) datasets. The functional significance of increased sialylation of MM cells has not previously been reported. Methods MM cell lines MM1s and RPMI-8226 were confirmed to have high expression levels of ST3GAL6 at the gene and protein level compared to healthy controls. Knockdown of ST3GAL6 was confirmed in MM cell lines RPMI-8226 and MM1s using lentiviral shRNAs targeting different regions in the ST3GAL6 mRNA. Specific ST3GAL6 knockdown was confirmed by reduced ST3GAL6 mRNA and protein expression in comparison to a scrambled control. In a calcein-AM fluorescence based adhesion assay we next evaluated the effects of ST3GAL6 knockdown on MM-cell adhesion to bone marrow stromal cells (BMSC’s) and fibronectin coated plates. Migration to 30nM SDF1-α was assessed using transwell plates comparing ST3GAL6 knockdown cells to scrambled controls. The commercially available sialyltransferase inhibitor 3Fax-Neu5Ac was used to pre-treat MM cells in vitro prior to assessment of apoptosis by flow cytometry. shST3GAL6 MM1s cells positive for green fluorescent protein and luciferin (GFP-Luc+) were injected into tail veins of SCID-Bg mice (5x106 cells, n=5/group) and mice were followed weekly using bioluminescent imaging (BLI) for tumor development. Bone marrow homing of tumor cells was assessed using in vivoconfocal imaging of the skull vasculature (n=3/group). Results Knockdown of ST3GAL6 in MM cell lines resulted in a 50% reduction in cell surface staining with the monoclonal antibody HECA-452. This indicated reduced expression of cutaneous lymphocyte associated antigen (CLA), a carbohydrate domain shared by sialyl Lewis X (sLex) and sialyl Lewis a (sLea) antigens, confirming suppression of ST3GAL6 activity. There was a significant reduction in the ability of knockdown cells to adhere to BMSC’s and fibronectin in-vitro compared to scrambled controls (P=0.016, 0.032 respectively). Migration ability of these cells in response to SDF1-α was also reduced (P=0.01). In vivo in a xenograft SCID-Bg mouse model shST3GAL6 cells demonstrated a reduced tumor burden as assessed by weekly BLI (P=0.017 at week 4). A consolidated map of the skull bone marrow niche in mice injected with shST3GAL6 MM1s GFP-Luc+ cells revealed a reduced homing ability of these cells in comparison to mice injected with scrambled control cells. Treatment of the MM cell lines MM1s and RPMI-8226 with a sialyltransferase inhibitor 3Fax-Neu5Ac resulted in almost complete elimination of cell surface sLex and/or sLea expression as determined by HECA-452 staining. Following pre-treatment with 3Fax-Neu5Ac, MM1S cells grown in co-culture with BMSC’s cells showed increased sensitivity to Bortezomib compared to cells treated with bortezomib alone. Conclusions shRNA knockdown of ST3GAL6 in MM cells significantly inhibits adhesion and migration in vitro with reduced homing and proliferation potential in vivo. In conjunction with the results of enzymatic inhibition this indicates that sialylation may play an important role in the malignant behavior of MM cells. Studies are ongoing to address the potential role of altered glycosylation in MM. Disclosures: Ghobrial: Onyx: Advisoryboard Other; BMS: Advisory board, Advisory board Other, Research Funding; Noxxon: Research Funding; Sanofi: Research Funding.


Sign in / Sign up

Export Citation Format

Share Document