scholarly journals Fast and Efficient Gene Editing in Human Hematopoietic Cells

Blood ◽  
2016 ◽  
Vol 128 (22) ◽  
pp. 4704-4704
Author(s):  
Michael C Gundry ◽  
Lorenzo Brunetti ◽  
Dimitrios Laurin Wagner ◽  
Joanne Hsu ◽  
Mireya Paulina Velasquez ◽  
...  

Abstract Although CRISPR/Cas9 is now accessible to a wide variety of cell-types and model systems, efficient editing of hematopoietic cells remains challenging. We have designed and optimized a protocol for rapid and efficient delivery of CRISPR/Cas9 to hematopoietic cell lines and primary cells. Combining electroporation's high transfection efficiency and the reduced cellular toxicity of Cas9 protein versus plasmid in suspension cells, we are able to produce highly efficient gene disruption and knock-in in a variety of human cell types, including acute myeloid leukemia (AML) cell lines, B-acute lymphoid leukemia (ALL) cell lines, primary T-lymphocytes and primary hematopoietic stem/progenitor cells (HSPCs). Our protocol involves rapid sgRNA template design and PCR amplification, followed by overnight in-vitro transcription, sgRNA purification and sgRNA-Cas9 ribonucleoprotein (RNP) formation. We began by testing the protocol on three AML cell lines, in which we observed up to 98% knock-out (KO) of the ubiquitous hematopoietic marker CD45 (%CD45neg cells by flow cytometry: HL-60 - 98%, OCI-AML2 - 92%, Kasumi - 87%). Using multiple guides, we also induced KO of two B-cell markers (CD19 and CD22) in three B-cell cancer cell lines (BV173, Daudi and Nalm-6). In these three cell lines, up to 70% of cells displayed combined loss of both cell surface receptors, indicating disruption of all four alleles (%CD19negCD22neg cells by flow cytometry: BV-173 - 58%, Nalm-6 - 70%, Daudi - 18%). We then optimized our editing strategy in human primary cells. We observed highly efficient CD45 loss (86±2%; n=3) in activated T-cells by flow cytometry and confirmed this KO frequency using high-throughput sequencing. We next measured CD45 gene disruption in CD34+ HSPC cells isolated from cord blood and found that our system had 75±10% editing efficiency (n=4). Importantly, a 48-hour period of cytokine stimulation with SCF/TPO/FLT3L prior to electroporation was required for efficient gene knockout (0hr: 8±4%, 24hr: 41±12%, 48hr: 73±16%; p0vs24=0.0002, p24vs48=0.003; n=8). Our protocol induced efficient gene disruption of several relevant targets in CD34+ cells including DNMT3A ex7 (69±4%; n=5), DNMT3A ex10 (86±14%; n=10) and NR3C1 (75±6%; n=5), and near complete loss of protein by western blot. To verify that the edited CD34+ HSPCs cells maintained engraftment and multilineage differentiation capacity, we transplanted Cas9 only (n=8) and Cas9/hCD45-sg1 RNP edited cells (n=8) into sub-lethally irradiated NOD scid gamma (NSG) mice. To avoid possible donor-dependent bias, each experimental pair (i.e. one Cas9 only replicate and one Cas9/hCD45-sg1 RNP treated replicate) was performed on cells derived from a single cord blood. Human cells successfully engrafted in the bone marrow of 16/16 recipients and spleens of 13/16 recipients. Importantly, we observed significant levels of engraftment by hCD45neg cells in the bone marrow of 7/8 mice and in the spleen of 5/8 mice transplanted with Cas9/hCD45-sg1 RNP edited cells (Figure 1A; Figure 1B shows one representative pair). High-throughput sequencing confirmed that engrafted human cells in BM displayed hCD45indel frequencies consistent with the flow cytometry data. Finally, we considered whether these editing strategies could be used to introduce specific point mutations into primary human HSPCs using Cas9-mediated homology directed repair (HDR). Single-stranded oligonucleotide HDR templates (ssODNs) with 90bp homology arms to the human CD45 locus were designed to introduce three basepair changes, two of which result in the generation of a BsiWI site near the CD45-sg1 cut site. High-throughput sequencing of treated human HSPC samples revealed efficient precise knock-in (22±4%; n=4) of the mutant allele. In conclusion, we describe a fast and efficient protocol for both gene disruption and targeted gene editing of human hematopoietic cells, including HSPCs, using the CRISPR/Cas9 system. The ability to quickly and efficiently edit primary human HSPCs using HDR makes it possible to introduce or repair genetic variants identified in association with hematologic diseases such as leukemia or bone marrow failure. Moreover, the high efficiency of this system offers the possibility to perform large-scale combinatorial gene editing in HSPCs to model complex mutational landscapes. Figure 1 Figure 1. Disclosures No relevant conflicts of interest to declare.

2021 ◽  
pp. 247255522110383
Author(s):  
Gurmeet Kaur ◽  
David M. Evans ◽  
Beverly A. Teicher ◽  
Nathan P. Coussens

Malignant tumors are complex tissues composed of malignant cells, vascular cells, structural mesenchymal cells including pericytes and carcinoma-associated fibroblasts, infiltrating immune cells, and others, collectively called the tumor stroma. The number of stromal cells in a tumor is often much greater than the number of malignant cells. The physical associations among all these cell types are critical to tumor growth, survival, and response to therapy. Most cell-based screens for cancer drug discovery and precision medicine validation use malignant cells in isolation as monolayers, embedded in a matrix, or as spheroids in suspension. Medium- and high-throughput screening with multiple cell lines requires a scalable, reproducible, robust cell-based assay. Complex spheroids include malignant cells and two normal cell types, human umbilical vein endothelial cells and highly plastic mesenchymal stem cells, which rapidly adapt to the malignant cell microenvironment. The patient-derived pancreatic adenocarcinoma cell line, K24384-001-R, was used to explore complex spheroid structure and response to anticancer agents in a 96-well format. We describe the development of the complex spheroid assay as well as the growth and structure of complex spheroids over time. Subsequently, we demonstrate successful assay miniaturization to a 384-well format and robust performance in a high-throughput screen. Implementation of the complex spheroid assay was further demonstrated with 10 well-established pancreatic cell lines. By incorporating both human stromal and tumor components, complex spheroids might provide an improved model for tumor response in vivo.


2021 ◽  
Author(s):  
Dashan Sun

CRISPR system is a powerful gene editing tool which has already been reported to address a variety of gene relevant diseases in different cell lines. However, off-target effect and immune response caused by Cas9 remain two fundamental problems. In our work, time-delayed safety switches are designed based on either artificial ultrasensitivity transmission module or intrinsic time delay in biomolecular activities. By addressing gene therapy efficiency, off-target effect, immune response and drug accumulation, we hope our safety switches may offer inspiration in realizing safe and efficient gene therapy in humans.


Micromachines ◽  
2019 ◽  
Vol 10 (6) ◽  
pp. 387
Author(s):  
Jianxiong Zhang ◽  
Yawei Hu ◽  
Xiaoqing Wang ◽  
Peng Liu ◽  
Xiaofang Chen

Intracellular gene delivery is normally required to study gene functions. A versatile platform able to perform both chemical transfection and viral transduction to achieve efficient gene modification in most cell types is needed. Here we demonstrated that high throughput chemical transfection, virus packaging, and transduction can be conducted efficiently on our previously developed superhydrophobic microwell array chip (SMAR-chip). A total of 169 chemical transfections were successfully performed on the chip in physically separated microwells through a few simple steps, contributing to the convenience of DNA delivery and media change on the SMAR-chip. Efficiencies comparable to the traditional transfection in multi-well plates (~65%) were achieved while the manual operations were largely reduced. Two transfection procedures, the dry method amenable for the long term storage of the transfection material and the wet method for higher efficiencies were developed. Multiple transfections in a scheduled manner were performed to further increase the transfection efficiencies or deliver multiple genes at different time points. In addition, high throughput virus packaging integrated with target cell transduction were also proved which resulted in a transgene expression efficiency of >70% in NIH 3T3 cells. In summary, the SMAR-chip based high throughput gene delivery is efficient and versatile, which can be used for large scale genetic modifications in a variety of cell types.


2018 ◽  
Vol 9 ◽  
Author(s):  
Christina J. Fiedler ◽  
Christoph Schönher ◽  
Philipp Proksch ◽  
David Johannes Kerschbaumer ◽  
Ernest Mayr ◽  
...  

Blood ◽  
1997 ◽  
Vol 89 (4) ◽  
pp. 1165-1172 ◽  
Author(s):  
Russell S. Taichman ◽  
Marcelle J. Reilly ◽  
Rama S. Verma ◽  
Stephen G. Emerson

Abstract Based on anatomic and developmental findings characterizing hematopoietic cells in close approximation with endosteal cells, we have begun an analysis of osteoblast/hematopoietic cell interactions. We explore here the functional interdependence between these two cell types from the standpoint of de novo cytokine secretion. We determined that, over a 96-hour period, CD34+ bone marrow cells had no significant effect on osteoblast secretion of granulocyte colony-stimulating factor, granulocyte-macrophage colony-stimulating factor, or transforming growth factor-β1 , but in some experiments minor increases in leukemia inhibitory factor levels were observed. However, when CD34+ bone marrow cells were cocultured in direct contact with osteoblasts, a 222% ± 55% (range, 153% to 288%) augmentation in interleukin-6 (IL-6) synthesis was observed. The accumulation of IL-6 protein was most rapid during the initial 24-hour period, accounting for nearly 55% of the total IL-6 produced by osteoblasts in the absence of blood cells and 77% of the total in the presence of the CD34+ cells. Cell-to-cell contact does not appear to be required for this activity, as determined by coculturing the two cell types separated by porous micromembranes. The identity of the soluble activity produced by the CD34+ cells remains unknown, but is not likely due to IL-1β or tumor necrosis factor-α, as determined with neutralizing antibodies. To our knowledge, these data represent the first demonstration that early hematopoietic cells induce the production of molecules required for the function of normal bone marrow microenvironments, in this case through the induction of hematopoietic cytokine (IL-6) secretion by osteoblasts.


Viruses ◽  
2020 ◽  
Vol 12 (6) ◽  
pp. 633 ◽  
Author(s):  
Maria Paola Pisano ◽  
Nicole Grandi ◽  
Enzo Tramontano

Human Endogenous retroviruses (HERVs) are remnants of ancient retroviral infections that represent a large fraction of our genome. Their transcriptional activity is finely regulated in early developmental stages and their expression is modulated in different cell types and tissues. Such activity has an impact on human physiology and pathology that is only partially understood up to date. Novel high-throughput sequencing tools have recently allowed for a great advancement in elucidating the various HERV expression patterns in different tissues as well as the mechanisms controlling their transcription, and overall, have helped in gaining better insights in an all-inclusive understanding of the impact of HERVs in biology of the host.


Blood ◽  
1997 ◽  
Vol 89 (7) ◽  
pp. 2328-2335 ◽  
Author(s):  
Zhong Chao Han ◽  
Min Lu ◽  
Junmin Li ◽  
Mai Defard ◽  
Bernadette Boval ◽  
...  

Abstract The effects of platelet factor 4 (PF4) on the viability and chemosensitivity of normal hematopoietic cells and cancer cell lines were studied to determine the mechanisms whereby PF4 functions as either an inhibitor or a protector and to evaluate its clinical significance. Two other chemokines, interleukin-8 (IL-8) and neutrophil-activating peptide-2 (NAP-2), were also studied in comparison to PF4. Using a tetrazolium salt assay for cell viability, we observed that PF4 at 1 to 50 μg/mL supported the viability of normal human bone marrow cells. Approximately 45% of cells cultured for 48 hours survived, whereas 80% or more survived in the presence of PF4 5 μg/mL. PF4 also supported the viability of CD34+ cord blood (CB) cells and protected them from apoptosis induced by transforming growth factor β1 (TGFβ1) and cytotoxic drugs. Pretreatment of CD34+ cells by PF4, but not by TGFβ1, caused an increase in the number of megakaryocyte colonies after these cells were replated in secondary cultures. Flow cytometry analysis showed that when CD34+ cells were preincubated with PF4 or TGFβ1 for 12 days in hematopoietic growth factor–rich medium, an increased number of remaining CD34+ cells was observed only for PF4-treated cells. Furthermore, PF4 significantly reduced the chemosensitivity of bone marrow cells, as shown by its ability to increase the 50% inhibition concentration (IC50) of several cytotoxic agents. Like PF4, IL-8 and NAP-2 at 0.1, 0.6, and 1 μg/mL supported the survival of myeloid progenitors, including colony-forming units granulocyte, erythroblast, monocyte, megakaryocyte (CFU-GEMM), CFU-megakaryocyte (CFU-MK), CFU–granulocyte/macrophage (CFU-GM), and burst-forming units–erythroblast (BFU-E), and reduced their sensitivity to the toxicity of etoposide (ETP). Protamine sulfate at 1 to 100 μg/mL showed no such activity of PF4. Interestingly, the three chemokines failed to affect significantly the viability and chemosensitivity of three leukemic and two other tumor cell lines. Based on these results, we conclude for the first time that PF4 and IL-8 and NAP-2 support the survival of normal hematopoietic precursors and protect them from the toxicity of chemotherapeutic agents. Because such activities are unique to normal hematopoietic cells but not to the cancer cell lines evaluated, a potential clinical application of these molecules in the treatment of cancer is suggested.


Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 4336-4336 ◽  
Author(s):  
Michael B. Lilly ◽  
Leslie Drapiza ◽  
Milan Sheth ◽  
Marina Zemskova ◽  
Svetlana Bashkirova ◽  
...  

Abstract COX-2 has been implicated in the development of many epithelial cancers, as well as in tumor angiogenesis. COX-2 inhibitors have been shown to have anti-tumor activity in experimental cancer. Little information exists, however, on the expression or role of COX-2 in hematologic malignancies. We have use a variety of immunochemical assays to document expression of COX-2 in human and murine leukemias and hematopoietic cells. The factor-dependent murine cell lines FDCP1 and 32D expressed COX-2 when growing continuously in the presence of IL-3; expression declined markedly when growth factor was removed. FDCP1 cells constitutively expressing bcl-2, pim-1, or bcr-abl had markedly elevated levels of COX-2, and continued to express this enzyme even after removal of growth factor. To assess COX-2 expression in human hematopoietic cells we developed a flow cytometry assay using a FITC-labelled anti-COX-2 MoAb (Cayman). Cells were washed once in serum-free medium, fixed briefly in 1% paraformaldehyde, permeabilized with PBS/0.2% Triton X100, then stained with antibody. Negative control samples were processed similarly but stained with antibody that had been preincubated with immunizing peptide. Specific COX-2 staining was interpreted as the difference between the histograms from blocked versus unblocked anti-COX-2 antibody, as determined by Kolmogorov-Smirnoff analysis. In buffy coat preparations from normal donors, we found constitutive expression of COX-2 in lymphocytes (both B-cells and T-cells). In contrast little or no COX-2 was detected in unstimulated neutrophils or monocytes. In human acute myelogenous leukemia (AML) cell lines we found COX-2 expression to be universal and easily detected. In several cell lines we confirmed the results of our flow cytometry assay with immunoblotting. We further examined 25 cryopreserved samples of human acute leukemia blasts obtained from peripheral blood. COX-2 expression was variable, but universal. Levels generally were less than those seen in immortalized cell lines, and did not correlate with blasts morphology (AML, ALL, APL, AMoL, CML-BT). To determine if COX-2 inhibitors could play a role in the treatment of acute leukemias, we performed cytotoxicity assays using the COX-2 specific inhibitors, celecoxib and NS398. Survival and growth of human AML cell lines were inhibited by both agents. These data demonstrate that 1) a variety of oncogenes can induce expression of COX-2 in hematopoietic cells, 2) clinical human acute leukemias uniformly express COX-2 in circulating blasts, and 3) COX-2 inhibitors are cytotoxic for human leukemia cells. Combination therapies for acute leukemias may evaluate the incorporation of COX-2 inhibitors for added cytotoxic effects or angiogenesis inhibition.


Blood ◽  
2005 ◽  
Vol 106 (11) ◽  
pp. 3380-3380 ◽  
Author(s):  
Noopur Raje ◽  
Shaji Kumar ◽  
Teru Hideshima ◽  
Kenji Ishitsuka ◽  
Hiroshi Yasui ◽  
...  

Abstract BAFF is a member of the tumor necrosis factor (TNF) family and is critical for the maintenance and homeostasis of normal B-cell development. Importantly, BAFF promotes the generation of rapidly dividing immunoglobulin secreting plasmablasts from activated memory B cells by enhancing their survival. Given that MM is a cancer of plasma cells and that the signaling cascades implicated in receptor ligand interactions of BAFF are crucial in MM cell biology, we hypothesized that this cytokine may play a critical role in MM cell development, survival, and proliferation. We performed gene expression profiling (GEP) on CD 138+ plasma cells isolated from 90 MM patients (45 newly diagnosed and 45 relapsed) and 11 healthy controls using the Affymetrix U133A arrays. Our data demonstrates increased expression of transmembrane activator and calcium modulator and cyclophilin ligand interactor (TACI) and B-cell maturation antigen (BCMA), 2 receptors used by BAFF to exert its effects. Our data also shows an increased expression of a proliferation-inducing ligand (APRIL), another member of the TNF family with homology to BAFF. Expression levels of BAFF and BAFF-R could not be determined because of lack of these probe sets on the Affymetrix U133A arrays. GEP analysis shows increased BCMA expression (p<0.0001, student T test) on newly diagnosed and relapsed MM versus normal plasma cells. Flow cytometry on MM cell lines demonstrated a differential expression of the three receptors of BAFF, with BCMA present on most cell lines but BAFF-R expressed at low levels only on LR5 cells and DOX40 MM cells. In contrast, flow cytometry performed on MM patient cells demonstrated the presence of all 3 receptors on CD 138+ cells. ELISA assays performed on 30 MM sera demonstrated a mean BAFF level of 618 pg/ml (range: 128–2126pg/ml) versus 235pg/ml (range: 158–326pg/ml) in 7 normal donor sera. Fifty six% (17/30) of MM patients had BAFF levels in excess of the highest value noted in normals. To understand the role BAFF might play in the biology of MM, we studied the effects of recombinant BAFF (rh-BAFF) on MM cells directly and in the context of its bone marrow microenvironment. (abstract # 554746) rh-BAFF conferred a survival advantage to MM cells and protected them against dexamethasone-induced cytotoxicity. Importantly, anti-apoptotic proteins Bcl2 and Mcl-1 were upregulated, as were growth and survival signals belonging to the JAK/STAT and MAPKinase pathways. Conversely, neutralizing antibody to BAFF blocked, at least in part, blocked the upregulation of anti-apoptotic proteins with associated growth and survival, confirming that these effects were due to BAFF. Importantly, all of these signals were downregulated even in the presence of bone marrow stromal cells (BMSCs). These data therefore show a role for BAFF mediating MM cell survival and provide the framework for inhibiting BAFF, either alone or in combination with dexamethasone, to improve patient outcome in MM.


Blood ◽  
2007 ◽  
Vol 110 (11) ◽  
pp. 3300-3300
Author(s):  
Vahagn Makaryan ◽  
Oscar Penate ◽  
David Dale ◽  
Andrew Aprikyan

Abstract Myelokathexis (MK) is a rare congenital hematopoietic disease characterized by hypercellular marrow and severe neutropenia. In some patients there is an association of Warts, Hypogammaglobulinemia, and severe Infections with Myelokathexis (WHIM syndrome). We and others reported accelerated apoptosis of bone marrow myeloid cells in MK evidenced by electron microscopy and flow cytometry studies. The impaired cell survival in MK was associated with reduction in Bcl-X expression at least partially restored by G-CSF treatment. Heterozygous mutations in the CXCR4 gene were reported in most of the families with WHIM syndrome. Interaction of CXCR4, a G-protein coupled chemokine receptor with SDF-1 ligand plays a key role in homing and mobilization of CXCR4-expressing hematopoietic cells. It has been reported that expression of mutant CXCR4 leads to reduced receptor internalization, increased calcium flux and enhanced chemotaxis of transduced CD34+ cells toward SDF1. However, the mechanism of mutant CXCR4-triggered neutropenia in MK remains largely unknown. We examined 11 patients representing 6 unrelated families with MK and found heterozygous CXCR4 mutations in affected but not healthy family members. We identified truncation and deletion mutations including a novel mutation resulting in a deletion of the last 29 amino acids in the cytoplasmic domain of CXCR4. Expression of deletion and truncation mutants in human promyelocytic cells triggered apoptosis similar to that observed in MK patients. Specifically, the rate of apoptotic annexin-positive cells was approximately 2-fold higher in cells transfected with CXCR4 mutants compared with control cells transfected with normal CXCR4. Accelerated apoptosis appeared to stem from a significantly increased dissipation of mitochondrial membrane potential as determined by flow cytometry analysis of DIOC6-labeled cells expressing CXCR4 mutants compared with controls with normal CXCR4 (p<0.02). Similar to enhanced chemotaxis of mononuclear cells observed in MK patients, expression of CXCR4 mutants but not the wild type, resulted in a significant increase in directional motility of cells to SDF-1 (p<0.01). These data indicate that our cellular model appears to closely recapitulate the myelokathexis phenotype. Accelerated apoptosis, but not enhanced chemotaxis induced by mutant CXCR4 was reduced to near-normal level by zVAD-fmk-caspase-specific inhibitor. Interestingly, the mutant CXCR4-triggered increase in chemotaxis to SDF-1 was normalized by treatment with protein kinase C inhibitor. This reduction in mutant CXCR4-mediated increase in chemotaxis in response to the treatment with PKC inhibitor was similar to that observed in response to the treatment with AMD3100. Interestingly, combined treatment with both AMD3100 and PKC inhibitor did not result in a synergistic effect, suggesting that these agents may utilize the same signaling pathway. Of note, neither the treatment with PKC inhibitor not with AMD3100 affected accelerated apoptosis, suggesting that accelerated apoptosis and enhanced chemotaxis are two independent pathways triggered by mutant CXCR4. Importantly, treatment of myelokathexis patients’ blood mononuclear cells with PKC inhibitor restored the abnormal chemotactic properties to near normal levels. Thus, our data suggest that AMD3100 and PKC inhibitor may be effective for treatment of myelokathexis patients with aberrant retention of hematopoietic cells in the bone marrow.


Sign in / Sign up

Export Citation Format

Share Document