scholarly journals The collagen structure of C1q induces wound healing by engaging discoidin domain receptor 2

2021 ◽  
Vol 27 (1) ◽  
Author(s):  
Ria Aryani Hayuningtyas ◽  
Myeonggil Han ◽  
Seoyeon Choi ◽  
Man Sup Kwak ◽  
In Ho Park ◽  
...  

Abstract Background C1q has been reported to reveal complement-independent roles in immune and non-immune cells. C1q binds to its specific receptors to regulate distinct functions that rely on the environment and cell types. Discoidin domain receptor 2 (DDR2) is activated by collagen and functions in wound healing by controlling matrix metalloproteinase (MMP) expression. Since C1q exhibits a collagen-like structure, we hypothesized that C1q might engage DDR2 to regulate wound healing and extracellular matrix (ECM) remodeling. Methods Cell-based assay, proximity ligation assay, ELISA, and surface plasmon analysis were utilized to investigate DDR2 and C1q binding. We also investigate the C1q-mediated in vitro wound healing ability using the human fibrosarcoma cell line, HT1080. Results C1q induced the phosphorylation of DDR2, p38 kinase, and ERK1/2. C1q and DDR2 binding improved cell migration and induced MMP2 and MMP9 expression. DDR2-specific shRNA reduced C1q-mediated cell migration for wound healing. Conclusions C1q is a new DDR2 ligand that promotes wound healing. These findings have therapeutic implications in wound healing-related diseases.

2021 ◽  
Vol 17 (6) ◽  
pp. 1079-1087
Author(s):  
Zaozao Chen ◽  
Qiwei Li ◽  
Shihui Xu ◽  
Jun Ouyang ◽  
Hongmei Wei

Matrix nanotopography plays an essential role in regulating cell behaviors including cell proliferation, differentiation, and migration. While studies on isolated single cell migration along the nanostructural orientation have been reported for various cell types, there remains a lack of understanding of how nanotopography regulates the behavior of collectively migrating cells during processes such as epithelial wound healing. We demonstrated that collective migration of epithelial cells was promoted on nanogratings perpendicular to, but not on those parallel to, the wound-healing axis. We further discovered that nanograting-modulated epithelial migration was dominated by the adhesion turnover process, which was Rho-associated protein kinase activity-dependent, and the lamellipodia protrusion at the cell leading edge, which was Rac1-GTPase activity-dependent. This work provides explanations to the distinct migration behavior of epithelial cells on nanogratings, and indicates that the effect of nanotopographic modulations on cell migration is cell-type dependent and involves complex mechanisms


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Mariko Moriyama ◽  
Shunya Sahara ◽  
Kaori Zaiki ◽  
Ayumi Ueno ◽  
Koichi Nakaoji ◽  
...  

AbstractWound healing is regulated by complex interactions between the keratinocytes and other cell types including fibroblasts. Recently, adipose-derived mesenchymal stromal/stem cells (ASCs) have been reported to influence wound healing positively via paracrine involvement. However, their roles in keratinocytes are still obscure. Therefore, investigation of the precise effects of ASCs on keratinocytes in an in vitro culture system is required. Our recent data indicate that the epidermal equivalents became thicker on a collagen vitrigel membrane co-cultured with human ASCs (hASCs). Co-culturing the human primary epidermal keratinocytes (HPEK) with hASCs on a collagen vitrigel membrane enhanced their abilities for cell proliferation and adhesion to the membrane but suppressed their differentiation suggesting that hASCs could maintain the undifferentiated status of HPEK. Contrarily, the effects of co-culture using polyethylene terephthalate or polycarbonate membranes for HPEK were completely opposite. These differences may depend on the protein permeability and/or structure of the membrane. Taken together, our data demonstrate that hASCs could be used as a substitute for fibroblasts in skin wound repair, aesthetic medicine, or tissue engineering. It is also important to note that a co-culture system using the collagen vitrigel membrane allows better understanding of the interactions between the keratinocytes and ASCs.


Author(s):  
Gil Topman ◽  
Orna Sharabani-Yosef ◽  
Amit Gefen

A wound healing assay is simple but effective method to study cell migration in vitro. Cell migration in vitro was found to mimic migration in vivo to some extent [1,2]. In wound healing assays, a “wound” is created by either scraping or mechanically crushing cells in a monolayer, thereby forming a denuded area. Cells migrate into the denuded area to complete coverage, and thereby “heal” the wound. Micrographs at regular time intervals are captured during such experiments for analysis of the process of migration.


1991 ◽  
Vol 99 (3) ◽  
pp. 583-586 ◽  
Author(s):  
D.J. Whitby ◽  
M.T. Longaker ◽  
M.R. Harrison ◽  
N.S. Adzick ◽  
M.W. Ferguson

Wound healing is a complex process involving the interaction of many cell types with the extracellular matrix (ECM). Fetal skin wound healing differs from that in the adult in that it occurs rapidly and without scar formation. The mechanisms underlying these differing processes may be related to the fetal environment, the stage of differentiation of the fetal cells or the ECM deposited in the wound. The spatial and temporal distribution of two components of the ECM, fibronectin and tenascin, were studied by immunostaining of cryosections from trunk wounds of fetal and adult sheep. Epithelialisation was complete earlier in the fetal wound than in the adult. The distribution of fibronectin was similar in fetal and adult wounds but tenascin was present earlier in the fetal wound. Fibronectin has several roles in wound healing including acting as a substratum for cell migration and as a mediator of cell adhesion through cell surface integrins. The attachment of fibroblasts to fibronectin is inhibited by tenascin and during development the appearance of tenascin in the ECM of migratory pathways correlates with the initiation of cell migration. Similarly, the appearance of tenascin in healing wounds may initiate cell migration. Tenascin was present in these wounds prior to cell migration and the rapid epithelialisation of fetal wounds may be due to the early appearance of tenascin in the wound.


Nutrients ◽  
2019 ◽  
Vol 11 (5) ◽  
pp. 1075 ◽  
Author(s):  
Panagiotis Tsakiroglou ◽  
Natalie E. VandenAkker ◽  
Cristian Del Bo’ ◽  
Patrizia Riso ◽  
Dorothy Klimis-Zacas

Cell migration is a critical process that is highly involved with normal and pathological conditions such as angiogenesis and wound healing. Important members of the RHO GTPase family are capable of controlling cytoskeleton conformation and altering motility characteristics of cells. There is a well-known relationship between small GTPases and the PI3K/AKT pathway. Endothelial cell migration can lead to angiogenesis, which is highly linked to wound healing processes. Phenolics, flavonoids, and anthocyanins are major groups of phytochemicals and are abundant in many natural products. Their antioxidant, antimicrobial, anti-inflammatory, antidiabetic, angiogenenic, neuroprotective, hepatoprotective, and cardioprotective properties have been extensively documented. This comprehensive review focuses on the in vitro and in vivo role of berry extracts and single anthocyanin and phenolic acid compounds on cell migration and angiogenesis. We aim to summarize the most recent published studies focusing on the experimental model, type of berry extract, source, dose/concentration and overall effect(s) of berry extracts, anthocyanins, and phenolic acids on the above processes.


2019 ◽  
Vol 20 (6) ◽  
pp. 1279 ◽  
Author(s):  
Amanda Leitolis ◽  
Paula Suss ◽  
João Roderjan ◽  
Addeli Angulski ◽  
Francisco da Costa ◽  
...  

Extracellular vesicles (EVs) are particles released from different cell types and represent key components of paracrine secretion. Accumulating evidence supports the beneficial effects of EVs for tissue regeneration. In this study, discarded human heart tissues were used to isolate human heart-derived extracellular vesicles (hH-EVs). We used nanoparticle tracking analysis (NTA) and transmission electron microscopy (TEM) to physically characterize hH-EVs and mass spectrometry (MS) to profile the protein content in these particles. The MS analysis identified a total of 1248 proteins. Gene ontology (GO) enrichment analysis in hH-EVs revealed the proteins involved in processes, such as the regulation of cell death and response to wounding. The potential of hH-EVs to induce proliferation, adhesion, angiogenesis and wound healing was investigated in vitro. Our findings demonstrate that hH-EVs have the potential to induce proliferation and angiogenesis in endothelial cells, improve wound healing and reduce mesenchymal stem-cell adhesion. Last, we showed that hH-EVs were able to significantly promote mesenchymal stem-cell recellularization of decellularized porcine heart valve leaflets. Altogether our data confirmed that hH-EVs modulate cellular processes, shedding light on the potential of these particles for tissue regeneration and for scaffold recellularization.


2007 ◽  
Vol 27 (23) ◽  
pp. 8190-8204 ◽  
Author(s):  
Mei-Ying Han ◽  
Hidetaka Kosako ◽  
Toshiki Watanabe ◽  
Seisuke Hattori

ABSTRACT Extracellular signal-regulated kinase (ERK) is important for various cellular processes, including cell migration. However, the detailed molecular mechanism by which ERK promotes cell motility remains elusive. Here we characterize epithelial protein lost in neoplasm (EPLIN), an F-actin cross-linking protein, as a novel substrate for ERK. ERK phosphorylates Ser360, Ser602, and Ser692 on EPLIN in vitro and in intact cells. Phosphorylation of the C-terminal region of EPLIN reduces its affinity for actin filaments. EPLIN colocalizes with actin stress fibers in quiescent cells, and stimulation with platelet-derived growth factor (PDGF) induces stress fiber disassembly and relocalization of EPLIN to peripheral and dorsal ruffles, wherein phosphorylation of Ser360 and Ser602 is observed. Phosphorylation of these two residues is also evident during wound healing at the leading edge of migrating cells. Moreover, expression of a non-ERK-phosphorylatable mutant, but not wild-type EPLIN, prevents PDGF-induced stress fiber disassembly and membrane ruffling and also inhibits wound healing and PDGF-induced cell migration. We propose that ERK-mediated phosphorylation of EPLIN contributes to actin filament reorganization and enhanced cell motility.


2010 ◽  
Vol 37 (8) ◽  
pp. 3813-3818 ◽  
Author(s):  
Gui-xing Jiang ◽  
Xiang-yu Zhong ◽  
Yun-fu Cui ◽  
Wei Liu ◽  
Sheng Tai ◽  
...  

Author(s):  
Floriana Cappiello ◽  
Bruno Casciaro ◽  
Maria Luisa Mangoni

Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. 4680-4680 ◽  
Author(s):  
Alba Matas-Céspedes ◽  
Anna Vidal-Crespo ◽  
Vanina Rodriguez ◽  
Julio Delgado ◽  
Neus Villamor ◽  
...  

Abstract Daratumumab (DARA) is a anti-human CD38 antibody with Fc-mediated cell killing activity. DARA induces killing of tumor cells, mainly via complement-dependent cytotoxicity (CDC), antibody-dependent cell-mediated cytotoxicity (ADCC) (de Weers M. J Immunol 2011), and antibody-dependent cellular phagocytosis (ADCP) by macrophages (mΦ), both murine and human in multiple myeloma (MM) and Burkitt lymphoma cells. DARA is currently being evaluated in phase III clinical trials in patients with MM. We have previously reported that DARA induces cytotoxic activity in vitro via ADCC in primary cells and cell lines from Chronic Lymphoctic Leukemia (CLL), and significantly prolongs overall survival of animals in a systemic CLL mouse model. Here, we present additional data on in vivo mechanism of DARA and its effect on tumor-microenvironment interactions in CLL. We first evaluated whether ADCP contributes to DARA activity both in vitro and in vivo. For in vitro ADCP, mΦ were generated from monocytes of normal PBMCs and stimulated with GM-CSF (10ng/mL, 7 days). CLL cell lines and primary cells were labeled with calcein and incubated for 4h with mΦ at an effector:target ratio of 2:1 in the presence of a fixed mAb concentration of 1 μg/mL, followed by flow cytometric analysis. The amount of remaining CLL target cells (CD19+, CD11b-) was reduced by 3-16%. ADCP defined as percentage of mφ which had phagocytosed, referred to as double positive mΦ (CD11b+, calcein+, CD19-), ranged from 3-10%. To analyze ADCP in vivo, SCID beige mice, devoid of NK cells but with active macrophages, were inoculated intraperitoneally with CLL cells (20×106) and simultaneously treated with a single dose of DARA or isotype control (20mg/kg, n=3-5 per group). Forty-eight hours later, CLL cells were recovered from the intraperitoneal cavity and counted in a flow cytometer (identified as human CD45+/CD19+/CD5+cells). In DARA-treated mice the number of CLL cells recovered was reduced by 42% (n=2, p<0.05) compared to the isotype control group. Remarkably, the decrease in cell number was already detectable 2h after DARA administration. CLL pathogenesis relies on supportive tumor-microenvironment interactions both in the bone marrow (BM) and in the lymph node (LN), and CD38 constitutes a molecular hub integrating proliferative and migratory signals for CLL (Malavasi, F. Blood 2011). We evaluated the effect of DARA on migration and adhesion. In in vitro migrations assays, we have demonstrated that DARA (10-30 μg/mL) inhibited CXCL12/SDF1α-mediated migration up to 70% (n=5). In addition, DARA reduced up to 55% (n=2) of downstream pERK activation, that peaked after 5min of CXCL12/SDF1α stimulation. We analyzed the effect of DARA on primary CLL cell migration from Peripheral Blood (PB) to BM and spleen in vivo, using NOD/SCID/gamma (NSG) null mice (lacking NK cells and effective macrophages). In this system, NSG mice were pretreated (day 0) with DARA, control IgG or anti-CXCR4 as positive control for inhibition of cell homing, prior to injection of fresh primary CLL cells (50×106 cells/per mice) on day 1. PB, BM and spleen cells were isolated on day 2 and CLL cells were identified by staining for human CD45/CD19/CD5 and counted using a flow cytometer. Cell counting showed that CLL cells mainly migrate to the spleen, and that DARA significantly reduced this migration (55% inhibition on average, p<0.05). In addition to migration, CD38 also plays a key role in cell adhesion through interaction with integrins (CD49d/CD29) and with extracellular matrix proteins. We analyzed the effect of DARA on the adhesion of CLL cells to the extracellular matrix vascular-cell adhesion molecule-1 (VCAM-1) mediated by CD49d/CD29. DARA reduced adhesion of CLL cells (n=4), to VCAM-1 by 46±13% (range 27-57) compared to isotype control. By RT-PCR we observed an up-regulation of MMP9 transcripts (average 2 fold, n=2), and DARA abrogated both constitutive MMP9 expression (90% reduction) and VCAM-derived (94% reduction) MMP9 expression. In summary, DARA shows a positive effect on ADCP-mediated anti-tumor activity on CLL cells both in vitro and in vivo. In addition DARA exhibits a strong effect on CLL cell migration and adhesion. Based on these data, we hypothesize that DARA may exert unique and substantial effects on CLL tumor cell growth and contributes to potent therapeutic efficacy in a clinical setting. Disclosures Doshi: Janssen R&D: Employment. Parren:Genmab: Employment, Equity Ownership. Lammerts van Bueren:Genmab : Employment. Pérez-Galán:Genmab: Research Funding.


Sign in / Sign up

Export Citation Format

Share Document