scholarly journals Novel nanoformulation of disulfiram with bacterially synthesized copper oxide nanoparticles for augmenting anticancer activity: an in vitro study

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Marwa M. Abu‑Serie ◽  
Marwa Eltarahony

Abstract Background Disulfiram (DS), in the presence of copper (Cu), exhibited potent broad anticancer activity. However, its clinical application is limited due to the poor solubility and stability. Hence, a novel nanocombination of DS with bacterially synthesized copper oxide nanoparticles (CuO NPs) was prepared herein to improve the anticancer efficacy of the typical DS–Cu complex. Our design utilized the nanocharacterization and prooxidant effect-mediated anticancer activity of CuO NPs which may lead to enhanced cellular uptake and thus improved anticancer efficacy of this unique nanocomplex. Results The characterized DS–CuO NPs exhibited high stability in serum and the strongest selective anticancer activity, with the lowest half-maximum inhibitory concentration (IC50 < 15 nM), against human breast, lung and liver cancer cells, by >10-fold, compared to DS–Cu, CuO NPs and Cu. Importantly, DS–CuO NPs revealed better synergistic anticancer effect and higher cellular uptake than DS–Cu. Moreover, this novel nanocomplex showed higher prooxidant effect-mediated apoptosis and anti-metastatic potential. This was accomplished by elevating cellular reactive species content with inhibiting the antioxidant defenders (functional marker of cancer stem cells (aldehyde dehydrogenase) and nuclear factor erythroid 2-related factor2), matrix metallopeptidase 9 and NF-κB as well as enhancing p53 expression. Conclusion All of the aforementioned findings verified that this novel nanocomplex was capable of improving the therapeutic index of the conventional DS–Cu complex. The potent selective anticancer activity of this promising nanomedicine merits further investigation, as a separate future study, using animal models as preliminary step before its clinical application. Graphic abstract

Author(s):  
Haider Qassim Raheem ◽  
Takwa S. Al-meamar ◽  
Anas M. Almamoori

Fifty specimens were collected from wound patients who visited Al-Hilla Teaching Hospital. The samples were grown on Blood and MacConkey agar for 24-48 hr at 37oC. The bacterial isolates which achieved as a pure and predominant growth from clinical samples as Pseudomonas fluorescens, were identified using morphological properties and Vitek2 system. The anti-bacterial activity of copper oxide nanoparticles (CuO NPs) against was tested by (disk diffusion assay) using dilutions of (400, 200, 100, 50, 25, and 12.5‎µ‎g/ml). The (MIC and MBC) of each isolate was determined. CuO NPs shows wide spectrum antibacterial activity against tested bacteria with rise zone of inhibition diameter that is proportionate with the increase in nanoparticle concentration. The MIC of CuO NPs extended from 100-200‎µ‎g/ml and the MBC ranged from 200-400‎µ‎g/ml. The antibiotic profile was determined by Viteck 2 compact system (Biomérieux). CuO NPs‎ found highly effective and safe in P. fluorescens wounds infections comparing with used antibiotics.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Alaa El Din Mahmoud ◽  
Khairia M. Al-Qahtani ◽  
Sahab O. Alflaij ◽  
Salma F. Al-Qahtani ◽  
Faten A. Alsamhan

AbstractEnvironmentally friendly copper oxide nanoparticles (CuO NPs) were prepared with a green synthesis route without using hazardous chemicals. Hence, the extracts of mint leaves and orange peels were utilized as reducing agents to synthesize CuO NPs-1 and CuO NPs-2, respectively. The synthesized CuO NPs nanoparticles were characterized using scanning electron microscopy (SEM), Energy Dispersive X-ray Analysis (EDX), BET surface area, Ultraviolet–Visible spectroscopy (UV–Vis), and Fourier Transform Infrared Spectroscopy (FT-IR). Various parameters of batch experiments were considered for the removal of Pb(II), Ni(II), and Cd(II) using the CuO NPs such as nanosorbent dose, contact time, pH, and initial metal concentration. The maximum uptake capacity (qm) of both CuO NPs-1 and CuO NPs-2 followed the order of Pb(II) > Ni(II) > Cd(II). The optimum qm of CuO NPs were 88.80, 54.90, and 15.60 mg g−1 for Pb(II), Ni(II), and Cd(II), respectively and occurred at sorbent dose of 0.33 g L−1 and pH of 6. Furthermore, isotherm and kinetic models were applied to fit the experimental data. Freundlich models (R2 > 0.97) and pseudo-second-order model (R2 > 0.96) were fitted well to the experimental data and the equilibrium of metal adsorption occurred within 60 min.


Processes ◽  
2020 ◽  
Vol 9 (1) ◽  
pp. 78
Author(s):  
Karla Araya-Castro ◽  
Tzu-Chiao Chao ◽  
Benjamín Durán-Vinet ◽  
Carla Cisternas ◽  
Gustavo Ciudad ◽  
...  

Amongst different living organisms studied as potential candidates for the green synthesis of copper nanoparticles, algal biomass is presented as a novel and easy-to-handle method. However, the role of specific biomolecules and their contribution as reductant and capping agents has not yet been described. This contribution reports a green synthesis method to obtain copper oxide nanoparticles (CuO-NPs) using separated protein fractions from an aqueous extract of brown algae Macrocystis pyrifera through size exclusion chromatography (HPLC-SEC). Proteins were detected by a UV/VIS diode array, time-based fraction collection was carried out, and each collected fraction was used to evaluate the synthesis of CuO-NPs. The characterization of CuO-NPs was evaluated by Dynamic Light Scattering (DLS), Z-potential, Fourier Transform Infrared (FTIR), Transmission Electron Microscope (TEM) equipped with Energy Dispersive X-ray Spectroscopy (EDS) detector. Low Molecular Weight (LMW) and High Molecular Weight (HMW) protein fractions were able to synthesize spherical CuO-NPs. TEM images showed that the metallic core present in the observed samples ranged from 2 to 50 nm in diameter, with spherical nanostructures present in all containing protein samples. FTIR measurements showed functional groups from proteins having a pivotal role in the reduction and stabilization of the nanoparticles. The highly negative zeta potential average values from obtained nanoparticles suggest high stability, expanding the range of possible applications. This facile and novel protein-assisted method for the green synthesis of CuO-NPs may also provide a suitable tool to synthesize other nanoparticles that have different application areas.


2014 ◽  
Vol 2014 ◽  
pp. 1-4 ◽  
Author(s):  
Maqusood Ahamed ◽  
Hisham A. Alhadlaq ◽  
M. A. Majeed Khan ◽  
Ponmurugan Karuppiah ◽  
Naif A. Al-Dhabi

We studied the structural and antimicrobial properties of copper oxide nanoparticles (CuO NPs) synthesized by a very simple precipitation technique. Copper (II) acetate was used as a precursor and sodium hydroxide as a reducing agent. X-ray diffraction patter (XRD) pattern showed the crystalline nature of CuO NPs. Field emission scanning electron microscope (FESEM) and field emission transmission electron microscope (FETEM) demonstrated the morphology of CuO NPs. The average diameter of CuO NPs calculated by TEM and XRD was around 23 nm. Energy dispersive X-ray spectroscopy (EDS) spectrum and XRD pattern suggested that prepared CuO NPs were highly pure. CuO NPs showed excellent antimicrobial activity against various bacterial strains (Escherichia coli,Pseudomonas aeruginosa,Klebsiella pneumonia,Enterococcus faecalis,Shigella flexneri,Salmonella typhimurium,Proteus vulgaris,andStaphylococcus aureus). Moreover,E. coliandE. faecalisexhibited the highest sensitivity to CuO NPs whileK. pneumoniawas the least sensitive. Possible mechanisms of antimicrobial activity of CuO NPs should be further investigated.


2021 ◽  
Author(s):  
Chedia Ben Ali Hassine ◽  
Hamza Kahri ◽  
Houcine Barhoumi

Abstract In this study, a novel non-enzymatic sensor based on copper oxide nanoparticles (CuO), polyaniline nanofibers (PANI) and murexide (Mu) modified glassy carbon electrode was developed and used for the detection of cholesterol. Copper oxide nanoparticles were deposited on the glassy carbon electrode through electrodeposition and electrochemical oxidation followed by electrodeposition of PANI-Mu composite. The as prepared CuO-PANI-Mu sensor was characterized using electrochemical, optical and morphological methods such as cyclic voltammetry (CV), impedance spectroscopy (EIS), linear sweep voltammetry (LSV), UV-visible and scanning electron microscopy (SEM). The elaborated composite matrix was used for cholesterol detection employing the impedance spectroscopy method. As a result, good analytical performances were obtained for cholesterol quantification with good stability and high sensitivity (5575 Ω/M) with a wide linear range from 0.5nM to 50mM.


2021 ◽  
Author(s):  
CI Chemistry International

A green, cost-effective and eco-friendly method for the synthesis of copper oxide nanoparticles (CuO NPs) using Bougainvillea flower aqueous extract at room temperature was reported. The synthesized CuO NPs were characterized by UV–visible spectroscopy, fourier transform infrared spectroscopy (FTIR), transmission electron microscopy (TEM) and X-ray diffraction (XRD) tecniques. The synthesized particles were highly stable, spherical in shape with an average diameter of 12±4 nm. The CuO NPs were explored for their antifungal activity against Aspergillus niger and responses revealed that CuO NPs are highly efficient to inhibit the fungal growth and zone of inhibition were comparable with standard drug. The green route for the synthesis of CuO NPs is suggested in view of promising antifungal activity.


2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Fozia Amin ◽  
Fozia ◽  
Baharullah Khattak ◽  
Amal Alotaibi ◽  
Muhammad Qasim ◽  
...  

The development of green technology is creating great interest for researchers towards low-cost and environmentally friendly methods for the synthesis of nanoparticles. Copper oxide nanoparticles (CuO-NPs) attracted many researchers due to their electric, catalytic, optical, textile, photonic, monofluid, and pharmacological activities that depend on the shape and size of the nanoparticles. This investigation aims copper oxide nanoparticles synthesis using Aerva javanica plant leaf extract. Characterization of copper oxide nanoparticles synthesized by green route was performed by three different techniques: X-Ray Diffraction (XRD), Fourier Transform Infrared (FTIR) Spectroscopy, and Scanning Electron Microscopy (SEM). X-ray diffraction (XRD) reveals the crystalline morphology of CuO-NPs and the average crystal size obtained is 15 nm. SEM images showed the spherical nature of the particles and size is lying in the 15–23 nm range. FTIR analysis confirms the functional groups of active components present in the extract which are responsible for reducing and capping agents for the synthesis of CuO-NPs. The synthesized CuO-NPs were studied for their antimicrobial potential against different bacterial as well as fungal pathogens. The results indicated that CuO-NPs show maximum antimicrobial activities against all the selected bacterial and fungal pathogens. Antimicrobial activities of copper oxide nanoparticles were compared with standard drugs Norfloxacin and amphotericin B antibiotics. Minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) of copper oxide nanoparticles were 128 μg/mL against all selected bacterial pathogens. MIC of fungus and minimum fungicidal concentration (MFC) of CuO-NPs were 160 μg/mL. Thus, CuO-NPs can be utilized as a broad-spectrum antimicrobial agent. The cytotoxic activity of the synthesized CuO-NPs suggested that toxicity was negligible at concentrations below 60 μg/mL.


Sign in / Sign up

Export Citation Format

Share Document