scholarly journals Effect of ensiled mulberry leaves and sun-dried mulberry fruit pomace on the fecal bacterial community composition in finishing steers

2017 ◽  
Vol 17 (1) ◽  
Author(s):  
Yan Li ◽  
Qingxiang Meng ◽  
Bo Zhou ◽  
Zhenming Zhou
2021 ◽  
Vol 12 ◽  
Author(s):  
Ruoshuang Liu ◽  
Jianbin Shi ◽  
Susanne Shultz ◽  
Dongsheng Guo ◽  
Dingzhen Liu

Mammal gastrointestinal tracts harbor diverse bacterial communities that play important roles in digestion, development, behavior, and immune function. Although, there is an increasing understanding of the factors that affect microbial community composition in laboratory populations, the impact of environment and host community composition on microbiomes in wild populations is less understood. Given that the composition of bacterial communities can be shaped by ecological factors, particularly exposure to the microbiome of other individuals, inter-specific interactions should impact on microbiome community composition. Here, we evaluated inter-population and inter-specific similarity in the fecal microbiota of Przewalski’s gazelle (Procapra przewalskii), an endangered endemic ruminant around Qinghai Lake in China. We compared the fecal bacterial communities of three Przewalski’s gazelle populations, with those of two sympatric ruminants, Tibetan gazelle (Procapra picticaudata) and Tibetan sheep (Ovis aries). The fecal bacterial community richness (Chao1, ACE) did not vary across the three Przewalski’s gazelle populations, nor did the composition vary between species. In contrast, the managed Przewalski’s gazelle population had higher bacterial diversity (Shannon and Simpson) and was more similar to its sympatric Tibetan sheep in beta diversity than the wild Przewalski’s gazelle populations. These results suggest that ecological factors like host community composition or diet affect Przewalski’s gazelle’s gastrointestinal bacterial community. The role of bacterial community composition in maintaining gastrointestinal health should be assessed to improve conservation management of endangered Przewalski’s gazelle. More broadly, captive breeding and reintroduction efforts may be impeded, where captive management results in dysbiosis and introduction of pathogenic bacteria. In free ranging populations, where wildlife and livestock co-occur, infection by domestic pathogens and diseases may be an underappreciated threat to wild animals.


2019 ◽  
Vol 7 (10) ◽  
pp. 410 ◽  
Author(s):  
Qinghua Qiu ◽  
Chaoyu Gao ◽  
Zhibiao Gao ◽  
Muhammad Aziz ur Rahman ◽  
Yang He ◽  
...  

The objective of this study was to explore whether collecting rumen samples of finishing steers at monthly intervals differed, and whether this difference or similarity varied with diets. For these purposes, 12 Chinese Holstein steers were equally divided into two groups. The dietary treatments were either standard energy and standard protein (C) or low energy and low protein (L). Rumen samples were obtained on day 30, day 60 and day 90 from both dietary treatments and were analyzed by using 16S rRNA gene sequencing. The results showed that monthly intervals had no effect on the richness and evenness of the rumen bacterial community in the two diets. However, taxonomic difference analysis (relative abundance >0.5%) revealed that the relative abundance of three phyla (Proteobacteria, Fibrobacteres and Cyanobacteria) and six genera (Rikenellaceae_RC9_gut_group, Ruminococcaceae_NK4A214_group, Fibrobacter, Eubacterium_coprostanoligenes_group, Ruminococcaceae_UCG-010 and Ruminobacter) were significantly different between monthly sampling intervals, and the difference was prominent between sampling in the first month and the subsequent two months. Moreover, the differences in abundances of phyla and genera between monthly sampling intervals were affected by diets. Analysis of similarity (ANOSIM) showed no significant differences between monthly sampling intervals in the C diet. However, ANOSIM results revealed that significant differences between the first month and second month and between the first month and third month were present in the L diet. These results indicated that temporal dynamics in rumen bacterial community composition did occur even after an adaptation period of three months. This study tracked the changes in rumen bacterial populations of finishing cattle after a shift in diet with the passage of time. This study may provide insight into bacterial adaptation time to dietary transition in finishing steers.


Data ◽  
2021 ◽  
Vol 6 (3) ◽  
pp. 27
Author(s):  
Hyo-Ryeon Kim ◽  
Jae-Hyun Lim ◽  
Ju-Hyoung Kim ◽  
Il-Nam Kim

Marine bacteria, which are known as key drivers for marine biogeochemical cycles and Earth’s climate system, are mainly responsible for the decomposition of organic matter and production of climate-relevant gases (i.e., CO₂, N₂O, and CH₄). However, research is still required to fully understand the correlation between environmental variables and bacteria community composition. Marine bacteria living in the Marian Cove, where the inflow of freshwater has been rapidly increasing due to substantial glacial retreat, must be undergoing significant environmental changes. During the summer of 2018, we conducted a hydrographic survey to collect environmental variables and bacterial community composition data at three different layers (i.e., the seawater surface, middle, and bottom layers) from 15 stations. Of all the bacterial data, 17 different phylum level bacteria and 21 different class level bacteria were found and Proteobacteria occupy 50.3% at phylum level following Bacteroidetes. Gammaproteobacteria and Alphaproteobacteria, which belong to Proteobacteria, are the highest proportion at the class level. Gammaproteobacteria showed the highest relative abundance in all three seawater layers. The collection of environmental variables and bacterial composition data contributes to improving our understanding of the significant relationships between marine Antarctic regions and marine bacteria that lives in the Antarctic.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Danijela Šantić ◽  
Kasia Piwosz ◽  
Frano Matić ◽  
Ana Vrdoljak Tomaš ◽  
Jasna Arapov ◽  
...  

AbstractBacteria are an active and diverse component of pelagic communities. The identification of main factors governing microbial diversity and spatial distribution requires advanced mathematical analyses. Here, the bacterial community composition was analysed, along with a depth profile, in the open Adriatic Sea using amplicon sequencing of bacterial 16S rRNA and the Neural gas algorithm. The performed analysis classified the sample into four best matching units representing heterogenic patterns of the bacterial community composition. The observed parameters were more differentiated by depth than by area, with temperature and identified salinity as important environmental variables. The highest diversity was observed at the deep chlorophyll maximum, while bacterial abundance and production peaked in the upper layers. The most of the identified genera belonged to Proteobacteria, with uncultured AEGEAN-169 and SAR116 lineages being dominant Alphaproteobacteria, and OM60 (NOR5) and SAR86 being dominant Gammaproteobacteria. Marine Synechococcus and Cyanobium-related species were predominant in the shallow layer, while Prochlorococcus MIT 9313 formed a higher portion below 50 m depth. Bacteroidota were represented mostly by uncultured lineages (NS4, NS5 and NS9 marine lineages). In contrast, Actinobacteriota were dominated by a candidatus genus Ca. Actinomarina. A large contribution of Nitrospinae was evident at the deepest investigated layer. Our results document that neural network analysis of environmental data may provide a novel insight into factors affecting picoplankton in the open sea environment.


2021 ◽  
Vol 12 (1) ◽  
pp. 157-172
Author(s):  
Shankar G. Shanmugam ◽  
Normie W. Buehring ◽  
Jon D. Prevost ◽  
William L. Kingery

Our understanding on the effects of tillage intensity on the soil microbial community structure and composition in crop production systems are limited. This study evaluated the soil microbial community composition and diversity under different tillage management systems in an effort to identify management practices that effectively support sustainable agriculture. We report results from a three-year study to determine the effects on changes in soil microbial diversity and composition from four tillage intensity treatments and two residue management treatments in a corn-soybean production system using Illumina high-throughput sequencing of 16S rRNA genes. Soil samples were collected from tillage treatments at locations in the Southern Coastal Plain (Verona, Mississippi, USA) and Southern Mississippi River Alluvium (Stoneville, Mississippi, USA) for soil analysis and bacterial community characterization. Our results indicated that different tillage intensity treatments differentially changed the relative abundances of bacterial phyla. The Mantel test of correlations indicated that differences among bacterial community composition were significantly influenced by tillage regime (rM = 0.39, p ≤ 0.0001). Simpson’s reciprocal diversity index indicated greater bacterial diversity with reduction in tillage intensity for each year and study location. For both study sites, differences in tillage intensity had significant influence on the abundance of Proteobacteria. The shift in the soil bacterial community composition under different tillage systems was strongly correlated to changes in labile carbon pool in the system and how it affected the microbial metabolism. This study indicates that soil management through tillage intensity regime had a profound influence on diversity and composition of soil bacterial communities in a corn-soybean production system.


2021 ◽  
Vol 3 (1) ◽  
Author(s):  
Alison C. Bartenslager ◽  
Nirosh D. Althuge ◽  
John Dustin Loy ◽  
Matthew M. Hille ◽  
Matthew L. Spangler ◽  
...  

Abstract Background Infectious Bovine Keratoconjunctivitis (IBK), commonly known as pinkeye, is one of the most significant diseases of beef cattle. As such, IBK costs the US beef industry at least 150 million annually. However, strategies to prevent IBK are limited, with most cases resulting in treatment with antibiotics once the disease has developed. Longitudinal studies evaluating establishment of the ocular microbiota may identify critical risk periods for IBK outbreaks or changes in the microbiota that may predispose animals to IBK. Results In an attempt to characterize the establishment and colonization patterns of the bovine ocular microbiota, we conducted a longitudinal study consisting of 227 calves and evaluated the microbiota composition over time using amplicon sequence variants (ASVs) based on 16S rRNA sequencing data and culture-based approaches. Beef calves on trial consisted of both male (intact) and females. Breeds were composed of purebred Angus and composites with varying percentages of Simmental, Angus, and Red Angus breeds. Average age at the start of the trial was 65 days ±15.02 and all calves remained nursing on their dam until weaning (day 139 of the study). The trial consisted of 139 days with four sampling time points on day 0, 21, 41, and 139. The experimental population received three different vaccination treatments (autogenous, commercial (both inactivated bacteria), and adjuvant placebo), to assess the effectiveness of different vaccines for IBK prevention. A significant change in bacterial community composition was observed across time periods sampled compared to the baseline (p < 0.001). However, no treatment effect of vaccine was detected within the ocular bacterial community. The bacterial community composition with the greatest time span between sampling time periods (98d span) was most similar to the baseline sample collected, suggesting re-establishment of the ocular microbiota to baseline levels over time after perturbation. The effect of IgA levels on the microbial community was investigated in a subset of cattle within the study. However, no significant effect of IgA was observed. Significant changes in the ocular microbiota were identified when comparing communities pre- and post-clinical signs of IBK. Additionally, dynamic changes in opportunistic pathogens Moraxella spp. were observed and confirmed using culture based methods. Conclusions Our results indicate that the bovine ocular microbiota is well represented by opportunistic pathogens such as Moraxella and Mycoplasma. Furthermore, this study characterizes the diversity of the ocular microbiota in calves and demonstrates the plasticity of the ocular microbiota to change. Additionally, we demonstrate the ocular microbiome in calves is similar between the eyes and the perturbation of one eye results in similar changes in the other eye. We also demonstrate the bovine ocular microbiota is slow to recover post perturbation and as a result provide opportunistic pathogens a chance to establish within the eye leading to IBK and other diseases. Characterizing the dynamic nature of the ocular microbiota provides novel opportunities to develop potential probiotic intervention to reduce IBK outbreaks in cattle.


2021 ◽  
Vol 99 (4) ◽  
Author(s):  
Raghavendra G Amachawadi ◽  
Wesley A Tom ◽  
Michael P Hays ◽  
Samodha C Fernando ◽  
Philip R Hardwidge ◽  
...  

Abstract Liver abscesses in feedlot cattle are polymicrobial infections. Culture-based studies have identified Fusobacterium necrophorum as the primary causative agent, but a number of other bacterial species are frequently isolated. The incidence of liver abscesses is highly variable and is affected by a number of factors, including cattle type. Holstein steers raised for beef production have a higher incidence than crossbred feedlot cattle. Tylosin is the commonly used antimicrobial feed additive to reduce the incidence of liver abscesses. The objective of this study was to utilize 16S ribosomal RNA amplicon sequence analyses to analyze the bacterial community composition of purulent material of liver abscesses of crossbred cattle (n = 24) and Holstein steers (n = 24), each fed finishing diet with or without tylosin. DNA was extracted and the V3 and V4 regions of the 16S rRNA gene were amplified, sequenced, and analyzed. The minimum, mean, and maximum sequence reads per sample were 996, 177,070, and 877,770, respectively, across all the liver abscess samples. Sequence analyses identified 5 phyla, 14 families, 98 genera, and 102 amplicon sequence variants (ASV) in the 4 treatment groups. The dominant phyla identified were Fusobacteria (52% of total reads) and Proteobacteria (33%). Of the top 25 genera identified, 17 genera were Gram negative and 8 were Gram positive. The top 3 genera, which accounted for 75% of the total reads, in the order of abundance, were Fusobacterium, Pseudomonas, and Bacteroides. The relative abundance, expressed as percent of total reads, of phyla, family, and genera did not differ (P &gt; 0.05) between the 4 treatment groups. Generic richness and evenness, determined by Shannon–Weiner and Simpson’s diversity indices, respectively, did not differ between the groups. The UniFrac distance matrices data revealed no clustering of the ASV indicating variance between the samples within each treatment group. Co-occurrence network analysis at the genus level indicated a strong association of Fusobacterium with 15 other genera, and not all of them have been previously isolated from liver abscesses. In conclusion, the culture-independent method identified the bacterial composition of liver abscesses as predominantly Gram negative and Fusobacterium as the dominant genus, followed by Pseudomonas. The bacterial community composition did not differ between crossbred and Holstein steers fed finishing diets with or without tylosin.


Sign in / Sign up

Export Citation Format

Share Document