scholarly journals Transcriptomic and metabolomic analyses provide insight into the volatile compounds of citrus leaves and flowers

2020 ◽  
Vol 20 (1) ◽  
Author(s):  
Haipeng Zhang ◽  
Mengjun Chen ◽  
Huan Wen ◽  
Zhenhua Wang ◽  
Jiajing Chen ◽  
...  

Abstract Background Previous reports have mainly focused on the volatiles in citrus fruits, and there have been few reports about the volatiles in citrus leaves and flowers. However, citrus leaves and flowers are also rich in volatile compounds with unique aromas. Here, to investigate the volatiles in citrus leaves and flowers, volatile profiling was performed on leaves from 62 germplasms and flowers from 25 germplasms. Results In total, 196 and 82 volatile compounds were identified from leaves of 62 citrus germplasms and flowers of 25 citrus germplasms, respectively. The dominant volatile terpenoids were more diverse in citrus leaves than in peels. A total of 34 volatile terpenoids were commonly detected in the leaves of at least 20 germplasms, among which 31 were overaccumulated in the leaves of wild or semiwild germplasms. This result was consistent with the high expression levels of five genes and one key gene of the mevalonate and 2-C-methyl-D-erythritol-4-phosphate (MEP) biosynthetic pathways, respectively, as well as the low expression levels of geranylgeranyl diphosphate synthase of the MEP pathway, relative to the levels in cultivars. Fully open flowers showed increased levels of four terpene alcohols and a decrease in sabinene content compared with balloon-stage flowers, especially in sweet orange. A monoterpene synthase gene was identified and functionally characterized as a sabinene synthase in vitro. Conclusions Collectively, our results suggest that 31 important terpenoids are abundant in wild or semiwild citrus germplasms, possibly because of a negative effect of domestication on the volatiles in citrus leaves. The sweet smell of fully open flowers may be attributed to increased levels of four terpene alcohols. In addition, a sabinene synthase gene was identified by combined transcriptomic and metabolomic analyses.

2019 ◽  
Vol 15 ◽  
pp. 2872-2880
Author(s):  
Xinlu Chen ◽  
Tobias G Köllner ◽  
Wangdan Xiong ◽  
Guo Wei ◽  
Feng Chen

Terpene synthases (TPSs) are pivotal enzymes for the production of diverse terpenes, including monoterpenes, sesquiterpenes, and diterpenes. In our recent studies, dictyostelid social amoebae, also known as cellular slime molds, were found to contain TPS genes for making volatile terpenes. For comparison, here we investigated Physarum polycephalum, a plasmodial slime mold also known as acellular amoeba. Plasmodia of P. polycephalum grown on agar plates were found to release a mixture of volatile terpenoids consisting of four major sesquiterpenes (α-muurolene, (E)-β-caryophyllene, two unidentified sesquiterpenoids) and the monoterpene linalool. There were no qualitative differences in terpenoid composition at two stages of young plasmodia. To understand terpene biosynthesis, we analyzed the transcriptome and genome sequences of P. polycephalum and identified four TPS genes designated PpolyTPS1–PpolyTPS4. They share 28–73% of sequence identities. Full-length cDNAs for the four TPS genes were cloned and expressed in Escherichia coli to produce recombinant proteins, which were tested for sesquiterpene synthase and monoterpene synthase activities. While neither PpolyTPS2 nor PpolyTPS3 was active, PpolyTPS1 and PpolyTPS4 were able to produce sesquiterpenes and monoterpenes from the respective substrates farnesyl diphosphate and geranyl diphosphate. By comparing the volatile profile of P. polycephalum plasmodia and the in vitro products of PpolyTPS1 and PpolyTPS4, it was concluded that most sesquiterpenoids emitted from P. polycephalum were attributed to PpolyTPS4. Phylogenetic analysis placed the four PpolyTPSs genes into two groups: PpolyTPS1 and PpolyTPS4 being one group that was clustered with the TPSs from the dictyostelid social amoeba and PpolyTPS2 and PpolyTPS3 being the other group that showed closer relatedness to bacterial TPSs. The biological role of the volatile terpenoids produced by the plasmodia of P. polycephalum is discussed.


1985 ◽  
Vol 110 (3) ◽  
pp. 329-337 ◽  
Author(s):  
G. A. Schuiling ◽  
H. Moes ◽  
T. R. Koiter

Abstract. The effect of pretreatment in vivo with oestradiol benzoate on in vitro secretion of LH and FSH was studied in long-term ovariectomized (OVX) rats both at the end of a 5-day continuous in vivo pretreatment with LRH and 4-days after cessation of such LRH pretreatment. Rats were on day 0 sc implanted with osmotic minipumps which released LRH at the rate of 250 ng/h. Control rats were implanted with a piece of silicone elastomer with the dimensions of a minipump. On days 2 and 4 the rats were injected with either 3 μg EB or with oil. On day 5 part of the rats were decapitated and the in vitro autonomous (i.e. non-LRH-stimulated) and 'supra-maximally' LRHstimulated release of LH and FSH was studied using a perifusion system. From other rats the minipumps were removed on day 5 and perifusion was performed on day 9. On the 5th day of the in vivo LRH pretreatment the pituitary LH/FSH stores were partially depleted; the pituitaries of the EB-treated rats more so than those of the oil-injected rats. EB alone had no significant effect on the content of the pituitary LH- and FSH stores. On day 9, i.e. 4 days after removal of the minipumps, the pituitary LH and FSH contents had increased in both the oil- and the EB injected rats, but had not yet recovered to control values. In rats not subjected to the 5-days pretreatment with LRH EB had a positive effect on the supra-maximally LRH-stimulated secretion of LH and FSH as well as on the non-stimulated secretion of LH. EB had no effect on the non-stimulated secretion of FSH. After 5 days of in vivo pretreatment with LRH only, the in vitro non-stimulated and supra-maximally LRH-stimulated secretion of both LH and FSH were strongly impaired, the effect correlating well with the LRH-induced depletion of the pituitary LH/FSH stores. In such LRH-pretreated rats EB had on day 5 a negative effect on the (already depressed) LRH-stimulated secretion of LH (not on that of FSH). EB had no effect on the non-stimulated LH/FSH secretion. It could be demonstrated that the negative effect of the combined LRH/EB pretreatment was mainly due to the depressing effect of this treatment on the pituitary LH and FSH stores: the effect of oestradiol on the pituitary LRH-responsiveness (release as related to pituitary gonadotrophin content) remained positive. In LRH-pretreated rats, however, this positive effect of EB was smaller than in rats not pretreated with LRH. Four days after removal of the minipumps there was again a positive effect of EB on the LRH-stimulated secretion of LH and FSH as well as on the non-stimulated secretion of LH. The positive effect of EB on the pituitary LRH-responsiveness was as strong as in rats which had not been exposed to exogenous LRH. The non-stimulated secretion of FSH was again not affected by EB. The results demonstrate that the effect of EB on the oestrogen-sensitive components of gonadotrophin secretion consists of two components: an effect on the pituitary LRH-responsiveness proper, and an effect on the pituitary LH/FSH stores. The magnitude of the effect of EB on the LRH-responsiveness is LRH dependent: it is very weak (almost zero) in LRH-pretreated rats, but strong in rats not exposed to LRH as well as in rats of which the LRH-pretreatment was stopped 4 days previously. Similarly, the effect of EB on the pituitary LH and FSH stores is LRH-dependent: in the absence of LRH, EB has no influence on the contents of these stores, but EB can potentiate the depleting effect of LRH on the LH/FSH-stores. Also this effect disappear after cessation of the LRH-pretreatment.


HortScience ◽  
1998 ◽  
Vol 33 (3) ◽  
pp. 469a-469
Author(s):  
L.J. Skog ◽  
D.P. Murr ◽  
B.E. Digweed

Volatile compounds are ubiquitous in plants, giving fruits their characteristic aroma and flavor. There is increasing evidence that these compounds can protect plants from pathogenic organisms. In this trial ≈25 volatile compounds were tested for efficacy against Monilinia fructicola and Penicillium expansum. Both in vitro tests on agar plugs of actively growing pathogens and in situ tests on inoculated stone fruits and pears were conducted. The volatile compounds were grouped into three categories based upon fungicidal activity in vitro: highly effective (fungicidal concentration ≤100 M), moderately effective (fungicidal concentration between 100–200 M) and ineffective (fungicidal concentration >200 M). Highly effective compounds included: acetaldehyde, citral, 2-ethyl-1-hexanol, 2,exadienal, E-2-hexenal, 4-hexen-3-one, linalool, (E,E)2,4-nonadienal, E-2-nonenal, E-3-none-2-one, salicylaldehyde, and valeraldehyde. Moderately effective compounds included: (E,Z) 2,6-nonadienal, propionaldehyde, terpinene, butyl acetate, E-cinnamaldehde, hexanal, E-2-hexen-1-ol, Z-3-hexen-1-ol and isoamyl acetate. Ineffective compounds included: butyrolactone, ethanol, ethyl acetate, and methyl acetate. Effectiveness of the compounds varied with both strain and type of microorganism tested. Concentraions required for effective control were much higher when the compounds were tested on inoculated fruit. Phytotoxicity was a problem with some compounds.


2016 ◽  
Vol 5 (03) ◽  
pp. 4927 ◽  
Author(s):  
Shubhi Srivastava ◽  
Paul A. K.

Plant associated microorganisms that colonize the upper and internal tissues of roots, stems, leaves and flowers of healthy plants without causing any visible harmful or negative effect on their host. Diversity of microbes have been extensively studied in a wide variety of vascular plants and shown to promote plant establishment, growth and development and impart resistance against pathogenic infections. Ferns and their associated microbes have also attracted the attention of the scientific communities as sources of novel bioactive secondary metabolites. The ferns and fern alleles, which are well adapted to diverse environmental conditions, produce various secondary metabolites such as flavonoids, steroids, alkaloids, phenols, triterpenoid compounds, variety of amino acids and fatty acids along with some unique metabolites as adaptive features and are traditionally used for human health and medicine. In this review attention has been focused to prepare a comprehensive account of ethnomedicinal properties of some common ferns and fern alleles. Association of bacteria and fungi in the rhizosphere, phyllosphere and endosphere of these medicinally important ferns and their interaction with the host plant has been emphasized keeping in view their possible biotechnological potentials and applications. The processes of host-microbe interaction leading to establishment and colonization of endophytes are less-well characterized in comparison to rhizospheric and phyllospheric microflora. However, the endophytes are possessing same characteristics as rhizospheric and phyllospheric to stimulate the in vivo synthesis as well as in vitro production of secondary metabolites with a wide range of biological activities such as plant growth promotion by production of phytohormones, siderophores, fixation of nitrogen, and phosphate solubilization. Synthesis of pharmaceutically important products such as anticancer compounds, antioxidants, antimicrobials, antiviral substances and hydrolytic enzymes could be some of the promising areas of research and commercial exploitation.


Separations ◽  
2021 ◽  
Vol 8 (5) ◽  
pp. 57
Author(s):  
Rokayya Sami ◽  
Abeer Elhakem ◽  
Mona Alharbi ◽  
Manal Almatrafi ◽  
Nada Benajiba ◽  
...  

Onions contain high antioxidants compounds that fight inflammation against many diseases. The purpose was to investigate some selected bioactive activities of onion varieties (Yellow, Red, Green, Leek, and Baby). Antioxidant assays and anti-inflammatory activities such as NO production with the addition of some bioactive components were determined and analyzed by using a spectrophotometer. Gas chromatography and mass spectrometry (GC–MS) was used for the volatile compounds, while an Atomic absorption spectrometer was used for mineral determinations. Red variety achieved the highest antioxidant activities. The total flavonoids were between (12.56 and 353.53 mg Quercetin/gin dry weight) (dw) and the total phenol was (8.75–25.73 mg/g dw). Leek, Yellow and Green extracts achieved highly anti-inflammatory values (3.71–4.01 μg/mL) followed by Red and Baby extracts, respectively. The highest contents of sodium, potassium, zinc, and calcium were established for Red onions. Furfuraldehyde, 5-Methyl-2-furfuraldehyde, 2-Methyl-2-pentenal, and 1-Propanethiol were the most predominant, followed by a minor abundance of the other compounds such as Dimethyl sulfide, Methyl allyl disulfide, Methyl-trans-propenyl-disulfide, and Methyl propyl disulfide. The results recommend that these varieties could act as sources of essential antioxidants and anti-inflammatories to decrease inflammation and oxidative stresses, especially red onions that recorded high activities.


2021 ◽  
Vol 16 (1) ◽  
Author(s):  
Di Hua ◽  
Jie Yang ◽  
Qinghai Meng ◽  
Yuanyuan Ling ◽  
Qin Wei ◽  
...  

Abstract Background Rheumatoid arthritis (RA) is a chronic autoimmune disease. Soufeng sanjie formula (SF), which is composed of scolopendra (dried body of Scolopendra subspinipes mutilans L. Koch), scorpion (dried body of Buthus martensii Karsch), astragali radix (dried root of Astragalus membranaceus (Fisch.) Bge), and black soybean seed coats (seed coats of Glycine max (L.) Merr), is a traditional Chinese prescription for treating RA. However, the mechanism of SF in treating RA remains unclear. This study was aim to investigate the anti-arthritic effects of SF in a collagen-induced arthritis (CIA) mouse model and explore the mechanism by which SF alleviates arthritis in CIA mice. Methods For in vivo studies, female DBA/1J mice were used to establish the CIA model, and either SF (183 or 550 mg/kg/day) or methotrexate (MTX, 920 mg/kg, twice/week) was orally administered to the mice from the day of arthritis onset. After administration for 30 days, degree of ankle joint destruction and serum levels of IgG and inflammatory cytokines were determined. The balance of Th17/Treg cells in the spleen and lymph nodes was analyzed using flow cytometry. Moreover, the expression levels of retinoic acid receptor-related orphan nuclear receptor (ROR) γt and phosphorylated STAT3 (pSTAT3, Tyr705) in the spleen were detected by immunohistochemistry. Furthermore, the effect of SF on Th17 cells differentiation in vitro was investigated in CD4+ T cells under Th17 polarization conditions. Results SF decreased the arthritis score, ameliorated paw swelling, and reduced cartilage loss in the joint of CIA mice. In addition, SF decreased the levels of bovine collagen-specific IgG in sera of CIA mice. SF decreased the levels of inflammatory cytokines (TNF-α, IL-6, and IL-17A) and increased the level of IL-10 both in the sera and the joint of CIA mice. Moreover, SF treatment rebalanced the Th17/Treg ratio in the spleen and lymph nodes of CIA mice. SF also reduced the expression levels of ROR γt and pSTAT3 (Tyr705) in the spleen of CIA mice. In vitro, SF treatment reduced Th17 cell generation and IL-17A production and inhibited the expression of RORγt, IRF4, IL-17A, and pSTAT3 (Tyr705) under Th17 polarization conditions. Conclusions Our results suggest that SF exhibits anti-arthritic effects and restores Th17/Treg homeostasis in CIA mice by inhibiting Th17 cell differentiation.


2009 ◽  
Vol 191 (9) ◽  
pp. 3050-3058 ◽  
Author(s):  
Sadanobu Abe ◽  
Ayako Yasumura ◽  
Teruo Tanaka

ABSTRACT Expression of the gene for the extracellular alkaline protease (aprE) of Bacillus subtilis is subject to regulation by many positive and negative regulators. We have found that aprE expression was increased by disruption of the glutamine synthetase gene glnA. The increase in aprE expression was attributed to a decreased in expression of scoC, which encodes a negative regulator of aprE expression. The glnA effect on scoC expression was abolished by further disruption of tnrA, indicating that aprE expression is under global regulation through TnrA. In the scoC background, however, aprE expression was decreased by glnA deletion, and it was shown that the decrease was due to a defect in positive regulation by DegU. Among the genes that affect aprE expression through DegU, the expression of degR, encoding a protein that stabilizes phosphorylated DegU, was inhibited by glnA deletion. It was further shown that the decrease in degR expression by glnA deletion was caused by inhibition of the expression of sigD, encoding the σD factor, which is required for degR expression. In accordance with these findings, the expression levels of aprE-lacZ in glnA scoC degR and scoC degR strains were identical. These results led us to conclude that glnA deletion brings about two effects on aprE expression, i.e., a positive effect through inhibition of scoC expression and a negative effect through inhibition of degR expression, with the former predominating over the latter.


2021 ◽  
Vol 10 (3) ◽  
pp. 391
Author(s):  
Rani D’haese ◽  
Tom Vrombaut ◽  
Geert Hommez ◽  
Hugo De Bruyn ◽  
Stefan Vandeweghe

Purpose: The aim of this in vitro study is to evaluate the accuracy of implant position using mucosal supported surgical guides, produced by a desktop 3D printer. Methods: Ninety implants (Bone Level Roxolid, 4.1 mm × 10 mm, Straumann, Villerat, Switzerland) were placed in fifteen mandibular casts (Bonemodels, Castellón de la Plana, Spain). A mucosa-supported guide was designed and printed for each of the fifteen casts. After placement of the implants, the location was assessed by scanning the cast and scan bodies with an intra-oral scanner (Primescan®, Dentsply Sirona, York, PA, USA). Two comparisons were performed: one with the mucosa as a reference, and one where only the implants were aligned. Angular, coronal and apical deviations were measured. Results: The mean implant angular deviation for tissue and implant alignment were 3.25° (SD 1.69°) and 2.39° (SD 1.42°) respectively, the coronal deviation 0.82 mm (SD 0.43 mm) and 0.45 mm (SD 0.31 mm) and the apical deviation 0.99 mm (SD 0.45 mm) and 0.71 mm (SD 0.43 mm). All three variables were significantly different between the tissue and implant alignment (p < 0.001). Conclusion: Based on the results of this study, we conclude that guided implant surgery using desktop 3D printed mucosa-supported guides has a clinically acceptable level of accuracy. The resilience of the mucosa has a negative effect on the guide stability and increases the deviation in implant position.


Genetics ◽  
2002 ◽  
Vol 162 (2) ◽  
pp. 633-645 ◽  
Author(s):  
Guido Cuperus ◽  
David Shore

Abstract We previously described two classes of SIR2 mutations specifically defective in either telomeric/HM silencing (class I) or rDNA silencing (class II) in S. cerevisiae. Here we report the identification of genes whose protein products, when either overexpressed or directly tethered to the locus in question, can establish silencing in SIR2 class I mutants. Elevated dosage of SCS2, previously implicated as a regulator of both inositol biosynthesis and telomeric silencing, suppressed the dominant-negative effect of a SIR2-143 mutation. In a genetic screen for proteins that restore silencing when tethered to a telomere, we isolated ESC2 and an uncharacterized gene, (YOL017w), which we call ESC8. Both Esc2p and Esc8p interact with Sir2p in two-hybrid assays, and the Esc8p-Sir2 interaction is detected in vitro. Interestingly, Esc8p has a single close homolog in yeast, the ISW1-complex factor Ioc3p, and has also been copurified with Isw1p, raising the possibility that Esc8p is a component of an Isw1p-containing nucleosome remodeling complex. Whereas esc2 and esc8 deletion mutants alone have only marginal silencing defects, cells lacking Isw1p show a strong silencing defect at HMR but not at telomeres. Finally, we show that Esc8p interacts with the Gal11 protein, a component of the RNA pol II mediator complex.


Blood ◽  
1999 ◽  
Vol 93 (12) ◽  
pp. 4154-4166 ◽  
Author(s):  
Robert L. Ilaria ◽  
Robert G. Hawley ◽  
Richard A. Van Etten

Abstract STAT5 is a member of the signal transducers and activation of transcription (STAT) family of latent transcription factors activated in a variety of cytokine signaling pathways. We introduced alanine substitution mutations in highly conserved regions of murine STAT5A and studied the mutants for dimerization, DNA binding, transactivation, and dominant negative effects on erythropoietin-induced STAT5-dependent transcriptional activation. The mutations included two near the amino-terminus (W255KR→AAA and R290QQ→AAA), two in the DNA-binding domain (E437E→AA and V466VV→AAA), and a carboxy-terminal truncation of STAT5A (STAT5A/▵53C) analogous to a naturally occurring isoform of rat STAT5B. All of the STAT mutant proteins were tyrosine phosphorylated by JAK2 and heterodimerized with STAT5B except for the WKR mutant, suggesting an important role for this region in STAT5 for stabilizing dimerization. The WKR, EE, and VVV mutants had no detectable DNA-binding activity, and the WKR and VVV mutants, but not EE, were defective in transcriptional induction. The VVV mutant had a moderate dominant negative effect on erythropoietin-induced STAT5 transcriptional activation, which was likely due to the formation of heterodimers that are defective in DNA binding. Interestingly, the WKR mutant had a potent dominant negative effect, comparable to the transactivation domain deletion mutant, ▵53C. Stable expression of either the WKR or ▵53C STAT5 mutants in the murine myeloid cytokine-dependent cell line 32D inhibited both interleukin-3–dependent proliferation and granulocyte colony-stimulating factor (G-CSF)–dependent differentiation, without induction of apoptosis. Expression of these mutants in primary murine bone marrow inhibited G-CSF–dependent granulocyte colony formation in vitro. These results demonstrate that mutations in distinct regions of STAT5 exert dominant negative effects on cytokine signaling, likely through different mechanisms, and suggest a role for STAT5 in proliferation and differentiation of myeloid cells.


Sign in / Sign up

Export Citation Format

Share Document