scholarly journals Combined proteomics, metabolomics and physiological analyses of rice growth and grain yield with heavy nitrogen application before and after drought

2020 ◽  
Vol 20 (1) ◽  
Author(s):  
Jie Du ◽  
Tianhua Shen ◽  
Qiangqiang Xiong ◽  
Changlan Zhu ◽  
Xiaosong Peng ◽  
...  

Abstract Background Nitrogen application can effectively mitigate the damage to crop growth and yield caused by drought. However, the efficiency of heavy nitrogen application before drought (NBD) and heavy nitrogen application after drought (NAD) to regulate rice response to drought stress remains controversial. In this study, we profiled physiology, proteomics and metabolomics in rice variety Wufengyou 286 of two nitrogen management modes (NBD and NAD) to investigate their yield formation and the mechanism of nitrogen regulation for drought resistance. Results Results revealed that the yield of NBD and NAD decreased significantly when it was subjected to drought stress at the stage of young panicle differentiation, while the yield of NBD was 33.85 and 36.33% higher than that of NAD in 2017 and 2018, reaching significant levels. Under drought conditions, NBD increased chlorophyll content and net photosynthetic rate in leaves, significantly improved the activities of antioxidant enzymes such as superoxide dismutase (SOD), peroxidase and catalase, and decreased malondialdehyde (MDA) content compared with NAD. NBD promoted nitrogen assimilation in leaves, which was characterized by increased activities of nitrate reductase (NR) and glutamine synthetase (GS). In addition, NBD significantly increased the contents of osmotic regulatory substances such as soluble sugar, soluble protein and free proline. Gene ontology and KEGG enrichment analysis of 234 differentially expressed proteins and 518 differential metabolites showed that different nitrogen management induced strong changes in photosynthesis pathway, energy metabolism pathway, nitrogen metabolism and oxidation-reduction pathways. Conclusion Different nitrogen management methods have significant differences in drought resistance of rice. These results suggest that heavy nitrogen application before drought may be an important pathway to improve the yield and stress resistance of rice, and provide a new ecological perspective on nitrogen regulation in rice.

2020 ◽  
Author(s):  
Yuhang Liu ◽  
Zhongqun He ◽  
Yongdong Xie ◽  
Lihong Su ◽  
Ruijie Zhang ◽  
...  

Abstract A pot experiment was conducted to investigate the growth, physiological changes and mechanism of drought resistance of Phedimus aizoon L. under different levels of water content .CK: 75% ~ 80% of the MWHC (maximum water holding capacity), Mild drought: 55% ~ 60%, Moderate drought: 40% ~ 45%, Severe drought: 20% ~ 25%.We observed that the plants grew normally in the first two treatments, even the mild drought promoted the growth of the roots. In the last two treatments, drought stress had a significant negative effect on plant growth, at the same time, Phedimus aizoon L. also made positive physiological response to cope with the drought: The aboveground part of the plant (leaf, plant height, stem diameter) was smaller, the waxy layer of the leaves was thickened, the stomata of the leaves were closed during the day, and only a few stomata were opened at night, which proved that the dark reaction cycle metabolism mode of the plant was transformed from C3 cycle to CAM pathway. The activity of antioxidant enzymes (SOD, POD and CAT) was continuously increased to alleviate the damage caused by drought. To ensure the relative stability of osmotic potential, the contents of osmoregulation substances such as proline, soluble sugar, soluble protein and trehalose increased correspondingly. But plants have limited regulatory power, with aggravation of drought stress degree and extension of stress time, the MDA content and electrolyte leakage of leaves increased continuously. Observed under electron microscope,the morphology of chloroplast and mitochondria changed and the membrane structure was destroyed. The plant's photosynthetic and respiratory mechanisms are destroyed and the plant gradually die.


Molecules ◽  
2020 ◽  
Vol 25 (12) ◽  
pp. 2828
Author(s):  
Md. Shakhawat Hossain ◽  
Jing Li ◽  
Ashim Sikdar ◽  
Mirza Hasanuzzaman ◽  
Ferdinand Uzizerimana ◽  
...  

Tartary buckwheat is one of the nutritious minor cereals and is grown in high-cold mountainous areas of arid and semi-arid zones where drought is a common phenomenon, potentially reducing the growth and yield. Melatonin, which is an amphiphilic low molecular weight compound, has been proven to exert significant effects in plants, under abiotic stresses, but its role in the Tartary buckwheat under drought stress remains unexplored. We evaluated the influence of melatonin supplementation on plant morphology and different physiological activities, to enhance tolerance to posed drought stress by scavenging reactive oxygen species (ROS) and alleviating lipid peroxidation. Drought stress decreased the plant growth and biomass production compared to the control. Drought also decreased Chl a, b, and the Fv/Fm ratio by 54%, 70%, and 8%, respectively, which was associated with the disorganized stomatal properties. Under drought stress, H2O2, O2•−, and malondialdehyde (MDA) contents increased by 2.30, 2.43, and 2.22-folds, respectively, which caused oxidative stress. In contrast, proline and soluble sugar content were increased by 84% and 39%, respectively. However, exogenous melatonin (100 µM) could improve plant growth by preventing ROS-induced oxidative damage by increasing photosynthesis, enzymatic antioxidants (superoxide dismutase, peroxidase, catalase, and ascorbate peroxidase), secondary metabolites like phenylalanine ammonialyase, phenolics, and flavonoids, total antioxidant scavenging (free radical DPPH scavenging), and maintaining relative water content and osmoregulation substances under water stress. Therefore, our study suggested that exogenous melatonin could accelerate drought resistance by enhancing photosynthesis and antioxidant defense in Tartary buckwheat plants.


2021 ◽  
Author(s):  
Shifa Xiong ◽  
Yangdong Wang ◽  
Yicun Chen ◽  
Ming Gao ◽  
Yunxiao Zhao ◽  
...  

Abstract Background: Quercus fabri Hance, Quercus serrata Thunb, Quercus acutissima Carruth, and Quercus variabilis BL are four Chinese oak species commonly used for forestation. In recent years, with the global warming caused by the greenhouse effect, seedlings in mountainous areas after afforestation often suffer seasonal drought stress, which seriously affects their survival and growth. In order to ensure the survival of seedlings, we need to select oak species with strong drought resistance. Therefore, we first need to understand the differences in drought resistance of the four oak tree species at the seedling stage, and comprehensively evaluate their drought resistance capabilities by studying the changes in the physiological and biochemical characteristics of the seedlings under continuous drought and rehydration conditions.Methods: The four oak seedlings were divided into drought-rewatering treatment group and normal watering control group. For the seedlings of the drought-rewatering treatment group, drought stress lasting 31 days was used, and then re-watering and recovering for 5 days. The water parameters, osmotic adjustment substance content, antioxidant enzyme activity and photosynthesis parameters of the seedlings in the two groups were measured every 5 days. Principal component analysis, correlation analysis and membership function were used to analyze the physiological and biochemical characteristics of the seedlings of the four oak in two groups.Results and conclusions: Compared with the control group, the relative water content, water potential, net photosynthetic rate, transpiration rate, and stomatal conductance levels of the four oaks all showed a downward trend under continuous drought stress, and showed an upward trend after rehydration. The soluble protein, soluble sugar, proline, peroxidase, superoxide dismutase and catalase content of the four oaks increased first and then decreased under drought stress, and then increased after rehydration. The content of glycine betaine and malondialdehyde continued to increase, and gradually decreased after rehydration. The weight of each index was calculated by PCA, and then the comprehensive evaluation of each index was carried out through the membership function method. The drought resistance levels of the four oak species were as follows: Q. serrata > Q. fabri > Q. variabilis > Q. acutissima.


2021 ◽  
Author(s):  
Minoo Afshari ◽  
Alireza Pazoki ◽  
Omid Sadeghipour

Abstract Purpose Silicon (Si) plays beneficial role in alleviating biotic and abiotic stresses but comparative investigations with Si nanoparticles (Si-NPs) under water restriction on medicinal plants is not recognized. The aim of this study was to observe the Si and Si-NPs effects on growth, physio-chemical attributes, and essential oil (EO) profile in aerial parts of coriander (coriandrum sativum L.) under water stress. Methods A split-plot experiment was conducted with irrigation regimes (irrigation after 60, 90, and 120 mm evaporation from Class A pan) in the main plots and foliar application of Si (in the form of Na2SiO3) and Si-NPs in the subplots during 2019 and 2020. Results The results represented drought particularly severe stress decreased biological yield and relative water content (RWC) but increased total soluble sugar (TSS). Both Si and Si-NPs improved plant growth and yield through improved RWC, TSS, total phenolic content (TPC) and total flavonoid content (TFC). Moderate drought stress with Si-NPs was highly effective on TPC, TFC, EO percentage and yield. The main EO constitutes were n-Decanal (20.8-27.6%), 2E-Dodecanal (13.3-16.7%), 2E-Decanal (13.9-18.7%), 2E-Tridecen-1-al (7.3-10.5%), Dodecanal (7.2-10.6%), and n-Nonane (4.3-8.7%). Heat map analysis (HMA) showed foliar application of Si and Si-NPs were significantly distinguished from control treatment, which was mainly explained by EO yield and TFC attributes. Conclusion Foliar-applied Si-NPs was the rapidly and highly effective practice to reach the optimum antioxidant capacity and EO yield of coriander plants when experience moderate drought stress.


2021 ◽  
Vol 12 ◽  
Author(s):  
Yunrui Zhang ◽  
Jianfei Zhou ◽  
Fan Wei ◽  
Tianqi Song ◽  
Yang Yu ◽  
...  

Drought is the main abiotic stress factor limiting the growth and yield of wheat (Triticum aestivum L.). Therefore, improving wheat tolerance to drought stress is essential for maintaining yield. Previous studies have reported on the important role of TaNRX1 in conferring drought stress tolerance. Therefore, to elucidate the regulation mechanism by which TaNRX1 confers drought resistance in wheat, we generated TaNRX1 overexpression (OE) and RNA interference (RNAi) wheat lines. The results showed that the tolerance of the OE lines to drought stress were significantly enhanced. The survival rate, leaf chlorophyll, proline, soluble sugar content, and activities of the antioxidant enzymes (catalase, superoxide dismutase, and peroxidase) of the OE lines were higher than those of the wild type (WT); however, the relative electrical conductivity and malondialdehyde, hydrogen peroxide, and superoxide anion levels of the OE lines were lower than those of the WT; the RNAi lines showed the opposite results. RNA-seq results showed that the common differentially expressed genes of TaNRX1 OE and RNAi lines, before and after drought stress, were mainly distributed in the plant–pathogen interaction, plant hormone signal transduction, phenylpropane biosynthesis, starch and sucrose metabolism, and carbon metabolism pathways and were related to the transcription factors, including WRKY, MYB, and bHLH families. This study suggests that TaNRX1 positively regulates drought stress tolerance in wheat.


Author(s):  
Zaffar Mahdi Dar ◽  
Mushtaq Ahmad Malik ◽  
Malik Asif Aziz ◽  
Amjad Masood ◽  
Ab. Rouf Dar ◽  
...  

Environmental change is ascending as one of the most unpredictable issue, the effects of which are observable as rise in the onset of regular abiotic stresses like no or irregular precipitation, ascend in worldwide normal temperature, floods and so on. Among all the abiotic stresses, drought stress has become a sector of interest for decades. Drought stress can be chronic in locations with low water accessibility or irregular precipitation during the time of plant development consequently decreasing its growth and yield through its impact on plant photosynthetic rate, increased load of reactive oxygen species, changes in plant water relations and so on. A great deal of examination has been done to study the varieties of changes in the plants at the morphological, physiological and cellular level to identify the methodologies for enhancing plant drought resistance. In this regard "selenium" (Se) is considered exceptionally significant for improving plant growth and development. Spraying drought stressed plants or pre-treating the seeds with low dosage of Se have been shown to be associated with upgraded plant drought resistance. The present study is aimed to frame a review on the regulation of plant defense system, chlorophyll retention and plant water relations so as to provide comprehensive understanding into the changes caused by the application of Se which inturn are liable for improved plant drought tolerance.


2021 ◽  
Vol 15 (8) ◽  
pp. 927-936 ◽  
Author(s):  
Yan Peng ◽  
Yuewu Liu ◽  
Xinbo Chen

Background: Drought is one of the most damaging and widespread abiotic stresses that can severely limit the rice production. MicroRNAs (miRNAs) act as a promising tool for improving the drought tolerance of rice and have become a hot spot in recent years. Objective: In order to further extend the understanding of miRNAs, the functions of miRNAs in rice under drought stress are analyzed by bioinformatics. Method: In this study, we integrated miRNAs and genes transcriptome data of rice under the drought stress. Some bioinformatics methods were used to reveal the functions of miRNAs in rice under drought stress. These methods included target genes identification, differentially expressed miRNAs screening, enrichment analysis of DEGs, network constructions for miRNA-target and target-target proteins interaction. Results: (1) A total of 229 miRNAs with differential expression in rice under the drought stress, corresponding to 73 rice miRNAs families, were identified. (2) 1035 differentially expressed genes (DEGs) were identified, which included 357 up-regulated genes, 542 down-regulated genes and 136 up/down-regulated genes. (3) The network of regulatory relationships between 73 rice miRNAs families and 1035 DEGs was constructed. (4) 25 UP_KEYWORDS terms of DEGs, 125 GO terms and 7 pathways were obtained. (5) The protein-protein interaction network of 1035 DEGs was constructed. Conclusion: (1) MiRNA-regulated targets in rice might mainly involve in a series of basic biological processes and pathways under drought conditions. (2) MiRNAs in rice might play critical roles in Lignin degradation and ABA biosynthesis. (3) MiRNAs in rice might play an important role in drought signal perceiving and transduction.


2018 ◽  
Vol 5 (03) ◽  
Author(s):  
ARADHNA KUMARI ◽  
IM KHAN ◽  
ANIL KUMAR SINGH ◽  
SANTOSH KUMAR SINGH

Poplar clone Kranti was selected to assess the morphological, physiological and biochemical responses under drought at different levels of water stress, as it is a common clone used to be grown in Uttarakhand for making paper and plywood. The cuttings of Populus deltoides L. (clone Kranti) were exposed to four different watering regimes (100, 75, 50 and 25% of the field capacity) and changes in physiological and biochemical parameters related with drought tolerance were recorded. Alterations in physiological (i.e. decrease in relative water content) and biochemical parameters (i.e. increase in proline and soluble sugar content and build-up of malondialdehyde by-products) occurred in all the three levels of water stress, although drought represented the major determinant. Drought treatments (75%, 50% and 25% FC) decreased plant height, radial stem diameter, harvest index, total biomass content and RWC in all the three watering regimes compared to control (100% FC). Biochemical parameters like proline, soluble sugar and MDA content increased with severity and duration of stress, which helped plants to survive under severe stress. It was analyzed that for better wood yield poplar seedlings should avail either optimum amount of water (amount nearly equal to field capacity of soil) or maximum withdrawal up to 75% of field capacity up to seedling establishment period (60 days). Furthermore, this study manifested that acclimation to drought stress is related with the rapidity, severity, and duration of the drought event of the poplar species.


Agriculture ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 632
Author(s):  
Aihua Wang ◽  
Chao Ma ◽  
Hongye Ma ◽  
Zhilang Qiu ◽  
Xiaopeng Wen

Pitaya (Hylocereus polyrhizus L.) is highly tolerant to drought stress. Elucidating the response mechanism of pitaya to drought will substantially contribute to improving crop drought tolerance. In the present study, the physiological and proteomic responses of the pitaya cultivar ‘Zihonglong’ were compared between control seedlings and seedlings exposed to drought stress (−4.9 MPa) induced by polyethylene glycol for 7 days. Drought stress obviously enhanced osmolyte accumulation, lipid peroxidation, and antioxidant enzyme activities. Proteomic data revealed drought stress activated several pathways in pitaya, including carbohydrate and energy metabolism at two drought stress treatment time-points (6 h and 3 days). Other metabolic pathways, including those related to aspartate, glutamate, glutathione, and secondary metabolites, were induced more at 3 days than at 6 h, whereas photosynthesis and arginine metabolism were induced exclusively at 6 h. Overall, protein expression changes were consistent with the physiological responses, although there were some differences in the timing. The increases in soluble sugar contents mainly resulted from the degradation and transformation of insoluble carbohydrates. Differentially accumulated proteins in amino acid metabolism may be important for the conversion and accumulation of amino acids. GSH and AsA metabolism and secondary metabolism may play important roles in pitaya as enzymatic and nonenzymatic antioxidant systems. The enhanced carbohydrate and energy metabolism may provide the energy necessary for initiating the above metabolic pathways. The current study provided the first proteome profile of this species exposed to drought stress, and may clarify the mechanisms underlying the considerable tolerance of pitaya to drought stress.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Mohamed S. Sheteiwy ◽  
Dina Fathi Ismail Ali ◽  
You-Cai Xiong ◽  
Marian Brestic ◽  
Milan Skalicky ◽  
...  

Abstract Background The present study aims to study the effects of biofertilizers potential of Arbuscular Mycorrhizal Fungi (AMF) and Bradyrhizobium japonicum (B. japonicum) strains on yield and growth of drought stressed soybean (Giza 111) plants at early pod stage (50 days from sowing, R3) and seed development stage (90 days from sowing, R5). Results Highest plant biomass, leaf chlorophyll content, nodulation, and grain yield were observed in the unstressed plants as compared with water stressed-plants at R3 and R5 stages. At soil rhizosphere level, AMF and B. japonicum treatments improved bacterial counts and the activities of the enzymes (dehydrogenase and phosphatase) under well-watered and drought stress conditions. Irrespective of the drought effects, AMF and B. japonicum treatments improved the growth and yield of soybean under both drought (restrained irrigation) and adequately-watered conditions as compared with untreated plants. The current study revealed that AMF and B. japonicum improved catalase (CAT) and peroxidase (POD) in the seeds, and a reverse trend was observed in case of malonaldehyde (MDA) and proline under drought stress. The relative expression of the CAT and POD genes was up-regulated by the application of biofertilizers treatments under drought stress condition. Interestingly a reverse trend was observed in the case of the relative expression of the genes involved in the proline metabolism such as P5CS, P5CR, PDH, and P5CDH under the same conditions. The present study suggests that biofertilizers diminished the inhibitory effect of drought stress on cell development and resulted in a shorter time for DNA accumulation and the cycle of cell division. There were notable changes in the activities of enzymes involved in the secondary metabolism and expression levels of GmSPS1, GmSuSy, and GmC-INV in the plants treated with biofertilizers and exposed to the drought stress at both R3 and R5 stages. These changes in the activities of secondary metabolism and their transcriptional levels caused by biofertilizers may contribute to increasing soybean tolerance to drought stress. Conclusions The results of this study suggest that application of biofertilizers to soybean plants is a promising approach to alleviate drought stress effects on growth performance of soybean plants. The integrated application of biofertilizers may help to obtain improved resilience of the agro ecosystems to adverse impacts of climate change and help to improve soil fertility and plant growth under drought stress.


Sign in / Sign up

Export Citation Format

Share Document