scholarly journals Amygdalin promotes the activity of T cells to suppress the progression of HBV-related hepatocellular carcinoma via the JAK2/STAT3 signaling pathway

2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Ruoyu Wang ◽  
Dong Zhang ◽  
Kewei Sun ◽  
Jianping Peng ◽  
Wenfang Zhu ◽  
...  

Abstract Background Hepatitis B virus (HBV) infection is a high-risk factor of hepatocellular carcinoma (HCC). Cellular immune responses are essential for HCC development, and the CD4+ and CD8+ T subtypes are identified as the primary anti-tumor immune cells. In the study, we investigated the effect and mechanism of amygdalin in the cellular immune response in HBV-related HCC and HCC progression. Methods The cell proliferation was examined by MTT analysis. Cells metastasis ability was detected by Invasion and migration assays. Quantification of apoptotic cells was performed with Flow cytometer assay. The protein levels of p-STAT3, STAT3, p-JAK2, JAK2, caspase-3, cleaved caspase-3 were detected by performing immunoblotting assays. Results We demonstrate that amygdalin treatment could rescue the HBV-T cell viability and IFN-γ and TNF-αproduction. In HBV-T cells, the MFI levels of CD8+ are lower than that in NC-T cells. Moreover, the phosphorylation levels of STAT3 and JAK2 are higher in HBV-T cells, compared to those in NC-T cells, and then reduced by amygdalin treatment. Co-culture with HBV-T cells could reduce IFN-γ and TNF-α, production while increase IL-6 and IL-10 production in HepG2.2.15 cells; these alterations could be partially reversed by amygdalin pretreatment. Finally, co-culture with HBV-T cells significantly promoted the cell viability, inhibited the apoptosis, and promoted the migration of HepG2.2.15 cells, and these alterations could be partially reversed by amygdalin treatment. Conclusion Our findings provide a rationale for further studies on the functions and mechanism of amygdalin inhibiting HBV-related HCC cell proliferation, invasion, and migration via T cell-mediated tumor immunity.

2020 ◽  
Author(s):  
Ruoyu Wang ◽  
Dong Zhang ◽  
Kewei Sun ◽  
Jianping Peng ◽  
Wenfang Zhu ◽  
...  

Abstract Background: Hepatitis B virus (HBV) infection is a high-risk factor of hepatocellular carcinoma (HCC) . Cellular immune responses are essential for HCC development, and the CD4+ and CD8+ T subtypes are identified as the primary anti-tumor immune cells. In the study, we investigated the effect and mechanism of amygdalin in the cellular immune response in HBV-related HCC and HCC progression. Methods: The cell proliferation was examined by MTT analysis. Cells metastasis ability was detected by Invasion and migration assays. Quantification of apoptotic cells was performed with Flow cytometer assay. The protein levels of p-STAT3, STAT3, p-JAK2, JAK2, caspase-3, cleaved caspase-3 were detected by performing immunoblotting assays. Results: We demonstrate that amygdalin treatment could rescue the HBV-T cell viability and IFN-γ and TNF-αproduction . In HBV-T cells, the MFI levels of CD8 + are lower than that in NC-T cells. Moreover, the phosphorylation levels of STAT3 and JAK2 are higher in HBV-T cells, compared to those in NC-T cells, and then reduced by amygdalin treatment. Co-culture with HBV-T cells could reduce IFN-γ and TNF-α, production while increase IL-6 and IL-10 production in HepG2.2.15 cells; these alterations could be partially reversed by amygdalin pretreatment. Finally, co-culture with HBV-T cells significantly promoted the cell viability, inhibited the apoptosis, and promoted the migration of HepG2.2.15 cells , and these alterations could be partially reversed by amygdalin treatment. Conclusion: Our findings provide a rationale for further studies on the functions and mechanism of amygdalin inhibiting HBV-related HCC cell proliferation, invasion, and migration via T cell-mediated tumor immunity.


2020 ◽  
Author(s):  
Ruoyu Wang ◽  
Dong Zhang ◽  
Kewei Sun ◽  
Jianping Peng ◽  
Wenfang Zhu ◽  
...  

Abstract Background: Hepatitis B virus (HBV) infection is a high-risk factor of hepatocellular carcinoma (HCC). Cellular immune responses are essential for HCC development, and the CD4+ and CD8+ T subtypes are identified as the primary anti-tumor immune cells. In the study, we investigated the effect and mechanism of amygdalin in the cellular immune response in HBV-related HCC and HCC progression.Methods: The cell proliferation was examined by MTT analysis. Cells metastasis ability was detected by Invasion and migration assays. Quantification of apoptotic cells was performed with Flow cytometer assay. The protein levels of p-STAT3, STAT3, p-JAK2, JAK2, caspase-3, cleaved caspase-3 were detected by performing immunoblotting assays.Results: We demonstrate that amygdalin treatment could rescue the HBV-T cell viability and IFN-γ and TNF-αproduction. In HBV-T cells, the MFI levels of CD8+ are lower than that in NC-T cells. Moreover, the phosphorylation levels of STAT3 and JAK2 are higher in HBV-T cells, compared to those in NC-T cells, and then reduced by amygdalin treatment. Co-culture with HBV-T cells could reduce IFN-γ and TNF-α, production while increase IL-6 and IL-10 production in HepG2.2.15 cells; these alterations could be partially reversed by amygdalin pretreatment. Finally, co-culture with HBV-T cells significantly promoted the cell viability, inhibited the apoptosis, and promoted the migration of HepG2.2.15 cells, and these alterations could be partially reversed by amygdalin treatment. Conclusion: Our findings provide a rationale for further studies on the functions and mechanism of amygdalin inhibiting HBV-related HCC cell proliferation, invasion, and migration via T cell-mediated tumor immunity.


2019 ◽  
Author(s):  
Ruoyu Wang ◽  
Dong Zhang ◽  
Kewei Sun ◽  
Jianping Peng ◽  
Wenfang Zhu ◽  
...  

Abstract Purpose Hepatitis B virus (HBV) infection is a high-risk factor of hepatocellular carcinoma (HCC). Cellular immune responses are essential for HCC development, and the CD4+ and CD8+ T subtypes are identified as the primary anti-tumor immune cells. In the study, we investigated the effect and mechanism of amygdalin in the cellular immune response in HBV-related HCC and HCC progression.Methods The cell proliferation was examined by MTT analysis. Cells metastasis ability was detected by Invasion and migration assays. Quantification of apoptotic cells was performed with Flow cytometer assay. The protein levels of p-STAT3, STAT3, p-JAK2, and JAK2 were detected by performing immunoblotting assays.Results We demonstrate that amygdalin treatment could rescue the HBV-T cell viability and IFN-γ and TNF-αproduction. In HBV-T cells, the MFI levels of CD8+ are lower than that in NC-T cells. Moreover, the phosphorylation levels of STAT3 and JAK2 are higher in HBV-T cells, compared to those in NC-T cells, and then reduced by amygdalin treatment. Co-culture with HBV-T cells could reduce IFN-γ and TNF-α, production while increase IL-6 and IL-10 production in HepG2.2.15 cells; these alterations could be partially reversed by amygdalin pretreatment. Finally, co-culture with HBV-T cells significantly promoted the cell viability, inhibited the apoptosis, and promoted the migration of HepG2.2.15 cells, and these alterations could be partially reversed by amygdalin treatment.Conclusion Our findings provide a rationale for further studies on the functions and mechanism of amygdalin inhibiting HBV-related HCC cell proliferation, invasion, and migration via T cell-mediated tumor immunity.


2021 ◽  
Vol 20 ◽  
pp. 153303382110330
Author(s):  
Zhenzhao Luo ◽  
Yue Fan ◽  
Xianchang Liu ◽  
Shuiyi Liu ◽  
Xiaoyu Kong ◽  
...  

Background: Previous studies reported that N-myc downstream-regulated gene 1 (NDRG1) was upregulated in various cancer tissues and decreased expression of miR-188-3p and miR-133b could suppress cell proliferation, metastasis, and invasion and induce apoptosis of cancer cells. However, the molecular mechanism of NRDG1 involved in hepatocellular carcinoma (HCC) tumorigenesis is still unknown. Methods: The expressions of miR-188-3p, miR-133b, and NRDG1 in HCC tissues and cells were quantified by qRT-PCR and Western blot. MTT assay and transwell invasion assay were performed to evaluate cell growth and cell migration, respectively. Luciferase reporter assay were performed to determine whether miR-188-3p and miR-133b could directly bind to NRDG1 in HCC cells. Results: The results showed that NRDG1 was upregulated and these 2 microRNAs were downregulated in HCC tissues. NRDG1 was negatively correlated with miR-188-3p and miR-133b in HCC tissues. MiR-188-3p and miR-133b were demonstrated to directly bind to 3′UTR of NRDG1 and inhibit its expression. Upregulation of miR-188-3p and miR-133b reduced NRDG1 expression in hepatocellular carcinoma cell lines, which consequently inhibited cell growth and cell migration. Conclusions: Our finding suggested that miR-188-3p and miR-133b exert a suppressive effect on hepatocellular carcinoma proliferation, invasion, and migration through downregulation of NDRG1.


2021 ◽  
Vol 11 (9) ◽  
pp. 1785-1791
Author(s):  
Tangpeng Xu ◽  
Changli Ruan ◽  
Xu Bin ◽  
Mengxue Hu

Hepatocellular carcinoma (HCC) is a serious threat to human health. miR-340 participates in HCC pathogenesis, but its specific mechanism is not completely clear. Therefore, our study assessed the mechanism by how miR-340 involves in HCC. The cancer tissues and paracancerous tissues of HCC patients were collected. miR-340 mimics/NC and Akt siRNA were transfected into HepG2 cells followed by analysis of miR-304 and EMT-related molecules expression by Real-time PCR, cell invasion and migration by Transwell assay, cell proliferation ability by CCK8 assay as well as p-Akt and p-mTOR level by Western blot. miR-340 in HCC tissues was significantly downregulated compared to adjacent tissues (P <0.001). With increased pathological grade, miR-340 expression was decreased gradually. p-Akt and p-mTOR in HCC tissues was significantly upregulated and elevated gradually with increased pathological grade. p-Akt and p-mTOR was negatively associated with miR-340 (P <0.001). After overexpression of miR-340, HepG2 cell proliferation, invasion, migration and epithelialization were significantly inhibited, and p-Akt and p-mTOR was reduced. When Akt expression was interfered with siRNA, cell proliferation and epithelialization was further inhibited. miR-340 inhibits the development of hepatocellular carcinoma through Akt signaling pathway.


BMC Cancer ◽  
2019 ◽  
Vol 19 (1) ◽  
Author(s):  
Lei Li ◽  
Shuai Zhang ◽  
Hao Li ◽  
Haiyan Chou

Abstract Background Overexpression of fibroblast growth factor receptor 3 (FGFR3) has been linked to tumor progression in many types of cancer. The role of FGFR3 in melanoma remains unclear. In this study, we aimed to uncover the role of FGFR3 in the growth and metastasis of melanoma. Methods FGFR3 knockdown and overexpression strategies were employed to investigate the effects of FGFR3 on colony formation, cell apoptosis, proliferation, migration, and in vitro invasion, along with the growth and metastasis of melanoma in a xenografts mouse model. The protein expression levels of extracellular signal-regulated kinase (ERK), protein kinase B (AKT), epidermal growth factor receptor (EGFR), and epithelial-mesenchymal transition (EMT) markers were determined by Western blot analysis. Results The mRNA expression of FGFR3 was higher in melanoma tissues than normal healthy tissues. FGFR3 expression in cutaneous malignant melanoma (CMM) tissues was positively correlated with the Breslow thickness and lymph node metastasis. In A357 cells, knockdown of the FGFR3 gene decreased the colony formation ability, cell proliferation, invasion, and migration, but increased the caspase 3 activity and the apoptosis rate; overexpression of FGFR3 increased the colony formation ability, cell proliferation, invasion, and migration, but decreased the caspase 3 activity and apoptosis rates. FGFR3 knockdown also upregulated E-cadherin, downregulated N-cadherin and vimentin, and decreased the phosphorylation levels of ERK, AKT, and EGFR. In the MCC xenografts mice, knockdown of FGFR3 decreased tumor growth and metastasis. Conclusions FGFR3, which is highly expressed in CMM tissues, is correlated with increased Breslow thickness and lymph node metastasis. FGFR3 promotes melanoma growth, metastasis, and EMT behaviors, likely by affecting the phosphorylation levels of ERK, AKT, and EGFR.


2021 ◽  
Vol 12 ◽  
Author(s):  
Xiaoling Liu ◽  
Chenyu Wang ◽  
Qing Yang ◽  
Yue Yuan ◽  
Yunjian Sheng ◽  
...  

Purpose: The risk signature composed of four lncRNA (AC093797.1, POLR2J4, AL121748.1, and AL162231.4.) can be used to predict the overall survival (OS) of patients with hepatocellular carcinoma (HCC). However, the clinical significance and biological function of AC093797.1 are still unexplored in HCC or other malignant tumors. In this study, we aimed to investigate the biological function of AC093797.1 in HCC and screen the candidate hub genes and pathways related to hepatocarcinogenesis.Methods: RT-qPCR was employed to detect AC093797.1 in HCC tissues and cell lines. The role of AC093797.1 in HCC was evaluated via the cell-counting kit-8, transwell, and wound healing assays. The effects of AC093797.1 on tumor growth in vivo were clarified by nude mice tumor formation experiments. Then, RNA-sequencing and bioinformatics analysis based on subcutaneous tumor tissue was performed to identify the hub genes and pathways associated with HCC.Results: The expression of AC093797.1 decreased in HCC tissues and cell lines, and patients with low expressed AC093797.1 had poor overall survival (OS). AC093797.1 overexpression impeded HCC cell proliferation, invasion, and migration in vitro and suppressed tumor growth in vivo. Compared with the control group, 710 differentially expressed genes (243 upregulated genes and 467 downregulated genes) were filtered via RNA-sequencing, which mainly enriched in amino acid metabolism, extracellular matrix structure constituents, cell adhesion molecules cams, signaling to Ras, and signaling to ERKs.Conclusion: AC093797.1 may inhibit cell proliferation, invasion, and migration in HCC by reprograming cell metabolism or regulating several pathways, suggesting that AC093797.1 might be a potential therapeutic and prognostic marker for HCC patients.


2020 ◽  
Vol 168 (5) ◽  
pp. 547-555
Author(s):  
Jin Dou ◽  
Daoyuan Tu ◽  
Haijian Zhao ◽  
Xiaoyu Zhang

Abstract MiR-301a is as an oncogene involved in the regulation of gastric cancer (GC) progression, but the underlying mechanism is unclear. This study was to explore the lncRNA PCAT18/miR-301a/TP53INP1 axis in regulating the GC cell proliferation and metastasis. In the present study, GC tissues and cell lines were collected for the detection of PCAT18 expression. Herein, we found that PCAT18 is significantly decreases in human GC tissues and five GC cell lines. Overexpression of PCAT18 inhibits cell viability, invasion and migration of GC cells and tumour growth of GC xenograft tumours. PCAT18 negatively regulates the expression level of miR-301a. The interaction between PCAT18 and miR-301a is confirmed by RIP and RNA pull down. MiR-301a mimic increases cell viability and promotes cell migration and invasion and reverses the inhibitory action of PCAT18. TP53INP1 expression is negatively regulated by miR-301a and TP53INP1/miR-301a is involved in GC viability, migration and invasion. The promoting of PCAT18 on TP53INP1 expression is abolished by miR-301a overexpression. In conclusion, lncRNA PCAT18 acts as a tumour suppressor for GC and lncRNA PCAT18, miR-301a and TP53INP1 comprise a signal axis in regulating GC cell proliferation, migration and invasion.


Blood ◽  
1997 ◽  
Vol 90 (11) ◽  
pp. 4513-4521 ◽  
Author(s):  
Dieter Körholz ◽  
Ursula Banning ◽  
Halvard Bönig ◽  
Markus Grewe ◽  
Marion Schneider ◽  
...  

Abstract Interleukin-15 (IL-15) is a potent T-cell stimulating factor, which has recently been used for pre-clinical in vivo immunotherapy. Here, the IL-15 effect on CD3-stimulated peripheral human T cells was investigated. IL-15 induced a significant T-cell proliferation and upregulated CD25 expression. IL-15 significantly enhanced T-cell production of interferon-γ (IFN-γ), tumor necrosis factor-α (TNF-α), and IL-10. Between 10- and 100-fold greater concentrations of IL-15 were necessary to reach a biological effect equivalent to that of IL-2. Blockade of IL-2 binding to the high-affinity IL-2 receptor did not affect the IL-15 effects, suggesting that IL-15 did not act by inducing endogenous IL-2. Exogenously administered IL-10 significantly reduced the IL-15 and IL-2–mediated IFN-γ and TNF-α production, whereas T-cell proliferation and CD25 expression were not affected. The inhibitory effects of exogenously administered IL-10 on T-cell cytokine production appeared indirect, and are likely secondary to decreased IL-12 production by accessory cells. Inhibition of endogenous IL-10 binding to the IL-10 receptor significantly increased IFN-γ and TNF-α release from T cells. These data suggest that endogenous IL-10 can regulate activated T-cell production of IFN-γ and TNF-α via a paracrine negative feedback loop. The observations of this study could be of relevance for the therapeutic use of IL-15 in vivo.


2019 ◽  
Vol 2019 ◽  
pp. 1-9
Author(s):  
Lihui Lan ◽  
Wei Wang ◽  
Yue Huang ◽  
Chenghai Zhao ◽  
Xianmin Bu

Background/Aims. Hepatocellular carcinoma (HCC) is the lethal digestive cancer and the second leading cause of cancer death in men worldwide. Wnt7a, a 39Kd secreted glycoprotein composed of 349 amino acids, was reported to be related to various diseases. However, its role in HCC has not been studied yet. In this study, using gene expression data and clinical information obtained from the Oncomine and KMplot database, we acknowledged that WNT7A was underexpressed in HCC cancer tissue compared with normal tissue, and WNT7A underexpression was correlated with the decreased survival rate of HCC patients. The function of Wnt7a in cell viability, apoptosis, and migration was evaluated by biological behavior assay and molecular analysis. The findings revealed that WNT7A overexpression significantly restrained cell viability and migration while enhancing apoptosis. In addition, WNT7A overexpression promoted cell apoptosis by strengthening Caspase-3 activity and inhibited migration by downregulating EMT transcriptional factor Snail. Furthermore, the expression level of SKP2 was significantly downregulating in the WNT7A overexpression group. In conclusion, this study illustrated that overexpression of WNT7A inhibited cell viability and migration, which was likely attributed to the regulation of SKP2/P21.


Sign in / Sign up

Export Citation Format

Share Document