scholarly journals M2 macrophages‐derived exosomal microRNA-501-3p promotes the progression of lung cancer via targeting WD repeat domain 82

2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Jie Lei ◽  
Peng Chen ◽  
Feng Zhang ◽  
Na Zhang ◽  
Jianfei Zhu ◽  
...  

Abstract Background Exosomes are known to transmit microRNAs (miRNAs) to affect cancer progression, while the role of M2 macrophages-derived exosomes (M2 exosomes) conveying miR-501-3p in lung cancer (LC) remains unknown. We aim to explore the role of exosomal miR-501-3p in LC development via targeting WD repeat domain 82 (WDR82). Methods Lung cancer tissue and normal tissue specimens were collected, in which tumor-associated macrophages (TAM) were measured by immunohistochemistry. M2 macrophages were induced and treated with altered miR-501-3p, and then the exosomes were extracted and identified. MiR-501-3p and WDR82 expression in LC tissues and cell liens was determined. The predictive role of miR-501-3p in prognosis of LC patients was assessed, and the proliferation, colony formation ability, invasion, migration and apoptosis of the LC cells were determined. Targeting relationship between miR-501-3p and WDR82 was confirmed. Results TAM level was elevated in lung cancer tissues. MiR-501-3p was upregulated while WDR82 was downregulated in LC tissues and cell lines, and the M2 exosomes further upregulated miR-501-3p. M2 exosomes and exosomal miR-501-3p promoted LC cell growth. MiR-501-3p inhibition reversed the effect of M2 exosomes on LC cells. WDR82 was confirmed as a target gene of miR-501-3p. Conclusion M2 macrophages-derived exosomal miR-501-3p promotes the progression of LC via downregulating WDR82.

2020 ◽  
Vol 2020 ◽  
pp. 1-7
Author(s):  
Gaozhong Sun ◽  
Kewei Ni

Objective. The purpose of this study was to describe the role of Cavin3 in the progression of lung cancer and its underlying mechanism. Methods. Totally, 200 cases of lung cancer tissues and corresponding paracancer tissues were collected. Cavin3 expression in samples was determined by qRT-PCR, and the correlation with lung cancer stages as well as prognosis was statistically analyzed combined with matched clinical information. To investigate the mechanism of Cavin3 in lung cancer progression, firstly, Cavin3 was detected in lung cancer cell lines A549, PC9, and H520. Then, cells with stable Cavin3 overexpression and Cavin3 knockout were established to determine the effect of Cavin3 overexpression on the mammalian target of rapamycin (mTOR) signaling pathway. Subsequently, cells were harvested for cell proliferation, migration, and invasion assays in vitro, as well as nude mouse transplantation tumor experiment in vivo. Results. Cavin3 was seen to be highly expressed in cancer tissues. Statistical analysis with matched clinical data showed that Cavin3 as a prognostic indicator of lung cancer had important clinical value. In addition, it could be found that high expression of Cavin3 was able to promote cell proliferation, migration, and invasion and also potentiate tumor formation in vivo. Conclusion. Cavin3 was highly expressed in lung cancer, and it was capable to promote cell proliferation, invasion, and migration.


Author(s):  
Hexiao Tang ◽  
Yongde Liao ◽  
Chao Zhang ◽  
Guang Chen ◽  
Liqiang Xu ◽  
...  

Estrogens are key signaling molecules that regulate various physiological processes such as cell growth, development, and differentiation. They also play a major role in many pathological conditions, such as hormone-dependent cancer. The importance of inhibiting estrogen receptor signaling in diseases of estrogen target tissues, such as breast cancer, is well documented. However, the role of estrogen signaling in diseases of nontarget tissues, such as lung cancer, is not well characterized. The aim of the current study is to examine the expression of estrogen receptor (ER) and the roles of estradiol (E2) and fulvestrant on the progression of lung cancer. Tissue microarray (TMA) and immunohistochemistry (IHC) analyses were used to detect the expression of aromatase, ER, and ER in 198 patients. We performed analyses to determine if there was any correlation among these three proteins. A mouse model of urethane-induced lung adenocarcinoma was used in the study. Mice were divided into three treatment groups: blank control, E2 alone, and E2 + fulvestrant (ER antagonist). Western blot analysis and fluorescence quantitative PCR (FQ-PCR) were used to measure expression of ER protein and mRNA levels, respectively. ER, but not ER, was overexpressed in NSCLC samples. Lung cancer progression in mice treated with E2 was significantly increased compared to either the control group or the E2 + fulvestrant group. Mice in the E2 treatment group had significantly increased expression of ER at both the mRNA and protein levels compared to mice treated with E2 + fulvestrant or control. Our data suggest that ER promotes lung cancer progression in mice and that this progression can be inhibited with fulvestrant. These findings may help elucidate the role of ER in lung cancer and suggest that estrogen receptor antagonists, such as fulvestrant, may be therapeutically beneficial for the treatment of the disease.


2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Min Zhang ◽  
Jun Jiang ◽  
Cui Ma

Some related reports indicate that the outer retinal membrane protein 1 (ROM1) functions importantly in the regulation of the biological process of tumor. Nevertheless, studies towards the role of ROM1 in lung cancer are few. Here, our data demonstrated that ROM1 displayed a relation with lung cancer tumorigenesis and development. In the Tumor Genome Atlas (TCGA) cohort, reduced ROM1 level was observed in lung cancer tissues, instead of normal tissues. After bioinformatics analysis, the data revealed that ROM1 level was associated with the tumor stage. Additional results indicated that highly expressed ROM1 exhibited a positive correlation with the overall survival rate, and ROM1 was probably a promising prognostic biomarker of lung cancer. Additionally, our results indicated that knocking out ROM1 could promote cell proliferation, migration, and invasion. Our data conclusively demonstrated that ROM1 modulated lung cancer tumorigenesis and development, as a prognosis and treatment biomarker.


Author(s):  
Yue Zhao ◽  
Yuxia Liu ◽  
Shuang Li ◽  
Zhaoyun Peng ◽  
Xiantao Liu ◽  
...  

Abstract Background Lung cancer is the leading cause of cancer-related deaths worldwide (Ferlay et al., Int J Cancer 136:E359–386, 2015). In addition, lung cancer is associated with the highest mortality among all cancer types (Wu et al., Exp Ther Med 16:3004–3010, 2018). Previous studies report that microbiota play an important role in lung cancer. Notably, changes in lung and gut microbiota, are associated with progression of lung cancer. Several studies report that lung and gut microbiome promote lung cancer initiation and development by modulating metabolic pathways, inhibiting the function of immune cells, and producing pro-inflammatory factors. In addition, some factors such as microbiota dysbiosis, affect production of bacteriotoxins, genotoxicity and virulence effect, therefore, they play a key role in cancer progression. These findings imply that lung and gut microbiome are potential markers and targets for lung cancer. However, the role of microbiota in development and progression of lung cancer has not been fully explored. Purpose The aim of this study was to systemically review recent research findings on relationship of lung and gut microbiota with lung cancer. In addition, we explored gut–lung axis and potential mechanisms of lung and gut microbiota in modulating lung cancer progression. Conclusion Pulmonary and intestinal flora influence the occurrence, development, treatment and prognosis of lung cancer, and will provide novel strategies for prevention, diagnosis, and treatment of lung cancer.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Ronggang Luo ◽  
Yi Zhuo ◽  
Quan Du ◽  
Rendong Xiao

Abstract Background To detect and investigate the expression of POU domain class 2 transcription factor 2 (POU2F2) in human lung cancer tissues, its role in lung cancer progression, and the potential mechanisms. Methods Immunohistochemical (IHC) assays were conducted to assess the expression of POU2F2 in human lung cancer tissues. Immunoblot assays were performed to assess the expression levels of POU2F2 in human lung cancer tissues and cell lines. CCK-8, colony formation, and transwell-migration/invasion assays were conducted to detect the effects of POU2F2 and AGO1 on the proliferaion and motility of A549 and H1299 cells in vitro. CHIP and luciferase assays were performed for the mechanism study. A tumor xenotransplantation model was used to detect the effects of POU2F2 on tumor growth in vivo. Results We found POU2F2 was highly expressed in human lung cancer tissues and cell lines, and associated with the lung cancer patients’ prognosis and clinical features. POU2F2 promoted the proliferation, and motility of lung cancer cells via targeting AGO1 in vitro. Additionally, POU2F2 promoted tumor growth of lung cancer cells via AGO1 in vivo. Conclusion We found POU2F2 was highly expressed in lung cancer cells and confirmed the involvement of POU2F2 in lung cancer progression, and thought POU2F2 could act as a potential therapeutic target for lung cancer.


2014 ◽  
Vol 2014 ◽  
pp. 1-19 ◽  
Author(s):  
Norahayu Othman ◽  
Noor Hasima Nagoor

Lung cancer remains to be one of the most common and serious types of cancer worldwide. While treatment is available, the survival rate of this cancer is still critically low due to late stage diagnosis and high frequency of drug resistance, thus highlighting the pressing need for a greater understanding of the molecular mechanisms involved in lung carcinogenesis. Studies in the past years have evidenced that microRNAs (miRNAs) are critical players in the regulation of various biological functions, including apoptosis, which is a process frequently evaded in cancer progression. Recently, miRNAs were demonstrated to possess proapoptotic or antiapoptotic abilities through the targeting of oncogenes or tumor suppressor genes. This review examines the involvement of miRNAs in the apoptotic process of lung cancer and will also touch on the promising evidence supporting the role of miRNAs in regulating sensitivity to anticancer treatment.


Open Medicine ◽  
2021 ◽  
Vol 16 (1) ◽  
pp. 419-427
Author(s):  
Wenfeng He ◽  
Xia Liu ◽  
Zhijie Luo ◽  
Longmei Li ◽  
Xisheng Fang

Abstract FGF16 is implicated in the progression of some specific types of cancers, such as embryonic carcinoma, ovarian cancer, and liver cancer. Yet, the function of FGF16 in the development of lung cancer remains largely unexplored. In this study, we present the novel function of FGF16 and the regulation of miR-520b on FGF16 in lung cancer progression. In clinical lung cancer tissues, FGF16 is overexpressed and its high level is negatively associated with the low level of miR-520b. Furthermore, both the transcription and translation levels of FGF16 are restrained by miR-520b in lung cancer cells. For the regulatory mechanism investigation, miR-520b is able to directly bind to the 3′-untranslated region (3′UTR) of FGF16 mRNA, leading to its mRNA cleavage in the cells. Functionally, miR-520b reduces the growth of lung cancer and its inhibitor anti-miR520b is able to promote the growth through competing endogenous miR-520b. Moreover, FGF16 silence using RNA interference is capable of doing great damage to anti-miR-520b-accelerated growth of lung cancer. Thus, our finding indicates that FGF16 is a new target gene of miR-520b in lung cancer. For lung cancer, FGF16 may serve as a novel biomarker and miR-520b/FGF16 may be useful in clinical treatment.


2018 ◽  
Vol 2018 ◽  
pp. 1-17 ◽  
Author(s):  
Shree Ram Lamichhane ◽  
Thanuja Thachil ◽  
Paolo De Ieso ◽  
Harriet Gee ◽  
Simon Andrew Moss ◽  
...  

Background. MicroRNAs (miRNAs) have been found to play an important role in the development and outcomes for multiple human cancers. Their role as a prognostic biomarker in non-small-cell lung cancer (NSCLC) remains unclear. This meta-analysis aims to clarify the role of various miRNAs in the survival of NSCLC patients. Materials and Methods. All studies were identified through medical database search engines. A meta-analysis was conducted to assess the correlation between miRNAs expressions and overall survival among those NSCLC studies. Relevant data were extracted from each eligible study regarding baseline characteristics and key statistics such as hazard ratio (HR), 95% confidence interval (CI), and P value, which were utilized to calculate a pooled effect size. Result. Thirty-two studies were included in the meta-analysis. Using a random effect model, the combined HR and 95% CI for overall survival (OS) was calculated as 1.59 (1.39–1.82), predicting a poor overall survival. Five miRNAs (miR-21, miR-155, miR-let-7, miR-148a, and miR-148b) were found to be of significance for predicting OS in at least two studies, hence, selected for subgroup analysis. Subgroup analysis disclosed that elevated levels of miR-21 and miR-155 in both cancer tissue and blood samples were associated with worse OS. Compared to American studies (I-squared: <0.001% and P value: 0.94), Asian and European studies exhibited greater heterogeneity in miRNA expression and relationship to OS (I-squared, P values were approximately 78.85%, <0.001 and 61.28%, 0.006, respectively). These subgroup analyses also highlighted that elevated expression of miR-21 and miR-155 and low levels of expression of miR-148a, miR-148b, and miR-let-7 were associated with poor prognosis in NSCLC. Conclusion. miR-21, miR-155, miR-148a, miR-148b, and miR-let-7 are consistently up- or downregulated in NSCLC and are associated with poor OS. These miRNAs show potential as useful prognostic biomarkers in the diagnosis, treatment, and follow-up of NSCLC.


Sign in / Sign up

Export Citation Format

Share Document