scholarly journals Annexin A1 promotes the progression of bladder cancer via regulating EGFR signaling pathway

2022 ◽  
Vol 22 (1) ◽  
Author(s):  
Piao Li ◽  
Lingling Li ◽  
Zhou Li ◽  
Shennan Wang ◽  
Ruichao Li ◽  
...  

Abstract Background Bladder cancer (BLCA) is one of the most common malignancies worldwide. One of the main reasons for the unsatisfactory management of BLCA is the complex molecular biological mechanism. Annexin A1 (ANXA1), a Ca2+-regulated phospholipid-binding protein, has been demonstrated to be implicated in the progression and prognosis of many cancers. However, the expression pattern, biological function and mechanism of ANXA1 in BLCA remain unclear. Methods The clinical relevance of ANXA1 in BLCA was investigated by bioinformatics analysis based on TCGA and GEO datasets. Immunohistochemical (IHC) analysis was performed to detect the expression of ANXA1 in BLCA tissues, and the relationships between ANXA1 and clinical parameters were analyzed. In vitro and in vivo experiments were conducted to study the biological functions of ANXA1 in BLCA. Finally, the potential mechanism of ANXA1 in BLCA was explored by bioinformatics analysis and verified by in vitro and in vivo experiments. Results Bioinformatics and IHC analyses indicated that a high expression level of ANXA1 was strongly associated with the progression and poor prognosis of patients with BLCA. Functional studies demonstrated that ANXA1 silencing inhibited the proliferation, migration, invasion and epithelial–mesenchymal transition (EMT) of BLCA cells in vitro, and suppressed the growth of xenografted bladder tumors in vivo. Mechanistically, loss of ANXA1 decreased the expression and phosphorylation level of EGFR and the activation of downstream signaling pathways. In addition, knockdown of ANXA1 accelerated ubiquitination and degradation of P-EGFR to downregulate the activation of EGFR signaling. Conclusions These findings indicate that ANXA1 is a reliable clinical predictor for the prognosis of BLCA and promotes proliferation and migration by activating EGFR signaling in BLCA. Therefore, ANXA1 may be a promising biomarker for the prognosis of patients with BLCA, thus shedding light on precise and personalized therapy for BLCA in the future.

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Koichi Kitagawa ◽  
Katsumi Shigemura ◽  
Aya Ishii ◽  
Takuji Nakashima ◽  
Hirotaka Matsuo ◽  
...  

AbstractNanaomycin K, derived from Streptomyces rosa subsp. notoensis OS-3966T, has been discovered to have inhibitory bioactivity on epithelial–mesenchymal transition (EMT), an important mechanism of cancer cell invasion and migration. In this study, we examined the anti-EMT and anti-tumor effect of nanaomycin K in bladder cancer, where EMT has important roles in progression. We treated two bladder cancer lines, non-muscle-invasive KK47 and muscle-invasive T24, with nanaomycin K to determine the effects on cell proliferation, apoptosis and expression of EMT markers in vitro. Wound-healing assays were performed to assess cell invasion and migration. We conducted an in vivo xenograft study in which mice were inoculated with bladder cancer cells and treated with intratumoral administration of nanaomycin K to investigate its anti-tumor and EMT inhibition effects. As the results, nanaomycin K (50 µg/mL) significantly inhibited cell proliferation in KK47 (p < 0.01) and T24 (p < 0.01) in the presence of TGF-β, which is an EMT-inducer. Nanaomycin K (50 µg/mL) also significantly inhibited cell migration in KK47 (p < 0.01) and T24 (p < 0.01), and induced apoptosis in both cell lines in the presence of TGF-β (p < 0.01). Nanaomycin K increased the expression of E-cadherin and inhibited the expression of N-cadherin and vimentin in both cell lines. Nanaomycin K also decreased expression of Snail, Slug, phospho-p38 and phospho-SAPK/JNK especially in T24. Intratumoral administration of nanaomycin K significantly inhibited tumor growth in both KK47 and T24 cells at high dose (1.0 mg/body) (p = 0.009 and p = 0.003, respectively) with no obvious adverse events. In addition, nanaomycin K reversed EMT and significantly inhibited the expression of Ki-67 especially in T24. In conclusion, we demonstrated that nanaomycin K had significant anti-EMT and anti-tumor effects in bladder cancer cells, suggesting that nanaomycin K may be a therapeutic candidate for bladder cancer treatment.


2019 ◽  
Vol 11 ◽  
pp. 175883591984123 ◽  
Author(s):  
Lyu Zhaojie ◽  
Liu Yuchen ◽  
Chen Miao ◽  
Chen Yacun ◽  
Wu Shayi ◽  
...  

Background: Transitional cell carcinoma (TCC) of the bladder, the major histologic subtype of bladder cancer, is increasing in incidence and mortality, which requires the identification of effective biomarkers. Actin-regulating proteins have recently been proposed as important antitumor druggable targets. As a gelsolin-family actin-modulating protein, CAPG (gelsolin-like actin-capping protein) generated great interest due to its crucial effects in various biological and physiological processes; however, the role and mechanism of CAPG in TCCs remain unknown. Materials and methods: Bioinformatic analysis and immunohistochemistry of clinical specimens were performed to detect the expression level of CAPG. Both in vitro and in vivo assays were used to determine the oncogenic effect of CAPG in TCCs. Male 4–5-week-old BALB/c nude mice were used for in vivo tumorigenesis assays, while SCID mice were used for in vivo metastatic assays. Affymetrix microarray was used to identify the underlying molecular mechanism. Western blot and immunofluorescence were used to validate the expression and localization of proteins. Results: CAPG was frequently upregulated in TCCs and associated with clinical aggressiveness and worse prognosis. Functional assays demonstrated that CAPG could contribute to the tumorigenesis, metastasis and epithelial-mesenchymal transition (EMT) of TCCs both in vitro and in vivo. A novel mechanism that CAPG promoted TCC development via inactivating the Hippo pathway, leading to a nucleus translocation of Yes-associated protein was suggested. Conclusions: The current study identified CAPG as a novel and critical oncogene in TCCs, supporting the pursuit of CAPG as a potential target for TCC intervention.


Cancers ◽  
2020 ◽  
Vol 12 (10) ◽  
pp. 2728
Author(s):  
Mi Ra Yu ◽  
Hye Jung Kim ◽  
Hae Ryoun Park

Recently, it has been reported that Fusobacterium nucleatum, a major pathogen involved in chronic periodontitis, may play an important role in colorectal cancer (CRC) progression. In addition, inflammatory bowel diseases such as ulcerative colitis and Crohn’s disease represent major predisposing conditions for the development of CRC, and this subtype of cancer is called colitis-associated cancer (CAC). Although the importance of F. nucleatum in CRC has attracted attention, its exact role and related mechanism in CAC progression remain unclear. In this study, we investigated the effects of F. nucleatum in experimental colitis induced with dextran sodium sulfate (DSS), which is a well-known colitis-inducing chemical, on the aggressiveness of CAC and its related mechanism in both in vitro and in vivo models. F. nucleatum synergistically increased the aggressiveness and epithelial–mesenchymal transition (EMT) characteristics of CRC cells that were treated with DSS compared to those in non-treated CRC cells. The role of F. nucleatum in CAC progression was further confirmed in mouse models, as F. nucleatum was found to significantly increase the malignancy of azoxymethane (AOM)/DSS-induced colon cancer. This promoting effect of F. nucleatum was based on activation of the EGFR signaling pathways, including protein kinase B (AKT) and extracellular signal-regulated kinase (ERK), and epidermal growth factor receptor (EGFR) inhibition significantly reduced the F. nucleatum-induced EMT alteration. In conclusion, F. nucleatum accelerates the progression of CAC by promoting EMT through the EGFR signaling pathway.


2021 ◽  
Author(s):  
Ziqi Meng ◽  
Rui Zhang ◽  
Xuwei Wu ◽  
Meihua Zhang ◽  
Songnan Zhang ◽  
...  

Abstract Mortalin is involved in the malignant phenotype of many cancers. However, the specific molecular mechanisms involving Mortalin in lung adenocarcinoma remain unclear. In this study, we showed that both Mortalin mRNA and protein are overexpressed in lung adenocarcinoma. In addition, Mortalin overexpression was positively-correlated with poor overall survival. In vitro experiments showed that Mortalin silencing inhibited the proliferation, colony formation, and migration abilities of A549 and H1299 cells. Mortalin promotes EMT progression, angiogenesis, and tumor progression by activating the Wnt/β-catenin signaling pathway In vivo experiments further confirmed that Mortalin promoted malignant progression of lung adenocarcinoma. Taken together, our data suggest that Mortalin represents an attractive prognostic marker and therapeutic target in lung adenocarcinoma patients.


2021 ◽  
pp. 1-10
Author(s):  
Chenchun Fu ◽  
Jinjun Shi ◽  
Xiangyu Su ◽  
Shicheng Feng ◽  
Sheng Wang

This study aimed to explore the effect of ultrasound-stimulated microbubbles (USMBs) on tumor radiosensitivity in esophageal carcinoma (EC). The human EC cell line KYSE-510 and human umbilical vein endothelial cells (HUVECs) were exposed to radiation alone or in combination with USMBs. CCK-8, colony formation, and EdU assays were used to determine cell viability and proliferation. Cell apoptosis was assessed using flow cytometry. Cell migration and invasion were examined by wound healing and transwell assays. Western blotting showed that the protein levels were associated with apoptosis, epithelial–mesenchymal transition (EMT), and angiogenesis. An endothelial tube-forming assay was used to detect the angiogenic activity of HUVECs. Xenograft experiments were used to examine the effect of USMBs on EC radiosensitivity in vivo. The expression of Ki-67 in tumors was detected using immunohistochemistry. USMBs enhanced the suppressive effect of radiation on proliferation, migration, invasion, and EMT, and promoted radiation-induced apoptosis in EC cells in vitro. Angiogenesis in EC was suppressed by radiation and further inhibited by the combination of radiation and USMBs. In vivo experiments revealed that USMBs increased the radiosensitivity of ECs to tumor growth. Collectively, USMBs enhanced the effects of radiotherapy in esophageal carcinoma.


2020 ◽  
Vol 11 (9) ◽  
Author(s):  
Xiao Jiang ◽  
Jingpeng Liu ◽  
Simin Li ◽  
Bo Jia ◽  
Zhijie Huang ◽  
...  

Abstract Long non-coding RNAs (lncRNAs), which may be modulated by chemokines, are key regulators in many cancers including oral squamous cell carcinoma (OSCC). An understanding of lncRNAs involved in chemokine (CC motif) ligand 18 (CCL18)-induced OSCC promotion remains elusive. The present study using lncRNA sequencing found LINC00319 to be significantly upregulated in OSCC cells subjected to rCCL18 stimulation. Furthermore, LINC00319 knockdown was found to attenuate the carcinogenic function of CCL18 in OSCC, reducing OSCC proliferation, metastasis, epithelial-mesenchymal transition (EMT), and angiogenesis. LINC00319 was demonstrated to act as a ceRNA in OSCC, which directly responded to miR-199a-5p and rescued the repression of FZD4 by miR-199a-5p. Functionally, in vitro and in vivo experiments showed that LINC00319 promoted OSCC growth and metastasis via downregulating miR-199a-5p and upregulating FZD4. In vitro rescue assays demonstrated that miR-199a-5p inhibitor or FZD4 overexpression reversed the effects of LINC00319 silencing in OSCC. Importantly, the expression of miR-199a-5p and FZD4 were found to be mediated by CCL18, and miR-199a-5p mimics inhibited the CCL18-promoting effects in oral cancer cells. Taken together, these results evidenced a mechanism of CCL18 action in OSCC mediated through the LINC00319/miR-199a-5p/FZD4 signaling pathway, which may comprise a potential target for OSCC therapeutic development.


2021 ◽  
Vol 10 ◽  
Author(s):  
Bing Liao ◽  
Yun Yi ◽  
Lei Zeng ◽  
Zhi Wang ◽  
Xinhua Zhu ◽  
...  

Accumulating evidence has indicated that lncRNAs regulate various biological and pathological processes in diverse malignant tumors. The roles of LINC00667 in cancer development have been explored in glioma, hepatocellular carcinoma and non-small cell lung cancer, but not in nasopharyngeal carcinoma (NPC). In the present study, we characterize the role and molecular mechanism of LINC00667 in NPC progression. It was found that LINC00667 was overexpressed in NPC cells compared to normal cells. Silencing LINC00667 suppressed the proliferation, migration, invasion and epithelial mesenchymal transition (EMT) in NPC cells. In addition, bioinformatics analysis revealed that LINC00667 acted as a ceRNA to absorb miR-4319. Further investigations illustrated that miR-4319 had low expression in NPC cells and functioned as a tumor suppressor in the progression of NPC. Mechanistic study identified forkhead box Q1 (FOXQ1) as a functional target of miR-4319. The effect of LINC00667 in NPC development was mediated by the miR-4319/FOXQ1 axis. Analysis on tumorxenograft mouse model demonstrated that knockdown of LINC00667 repressed NPC tumor growth in vivo and confirmed the in vitro results. Our present study suggested that LINC00667 promoted the malignant phenotypes of NPC cells by competitively binding to miR-4319 to up-regulate FOXQ1 expression. Our results reveled that LINC00667 could be a diagnostic and therapeutic target for NPC patients.


2020 ◽  
Author(s):  
Chao Zhang ◽  
Songcheng Yin ◽  
Yuen Tan ◽  
Siwei Pan ◽  
Wen An ◽  
...  

Abstract Background: Spindle and kinetochore-related complex subunit 3 (SKA3), a member of the SKA family of proteins, is associated with the progression of multiple cancers. However, the role of SKA3 in gastric cancer has not been studied.Methods: The expression levels of SKA3 and dual-specificity phosphatase 2 (DUSP2) proteins were detected by immunohistochemistry. The effects of SKA3 and DUSP2 on the proliferation, migration, invasion, adhesion, and EMT of gastric cancer were studied in vitro and in vivo. Results: Immunohistochemical analysis of 164 cases of gastric cancer revealed that high expression of SKA3 was negatively correlated with DUSP2 expression and related to N stage, peritoneal metastasis, and poor prognosis. In vitro studies showed that silencing SKA3 expression inhibited the proliferation, migration, invasion, adhesion and EMT of gastric cancer. In vivo experiments showed that silenced expression of SKA3 inhibited tumor growth and peritoneal metastasis. Mechanistically, we found that SKA3 regulates the tumor suppressor DUSP2 and activates the MAPK/ERK pathway to promote gastric cancer. Conclusions: The SKA3-DUSP2-ERK1/2 axis is involved in the regulation of gastric cancer progression, and SKA3 is a potential therapeutic target for gastric cancer.


Cancers ◽  
2021 ◽  
Vol 13 (9) ◽  
pp. 2032
Author(s):  
Ying-Si Wu ◽  
Jar-Yi Ho ◽  
Cheng-Ping Yu ◽  
Chun-Jung Cho ◽  
Chia-Lun Wu ◽  
...  

Gemcitabine (GCB) resistance is a major issue in bladder cancer chemoresistance, but its underlying mechanism has not been determined. Epithelial-mesenchymal transition (EMT) has been shown to be comprehensively involved in GCB resistance in several other cancer types, but the direct connection between EMT and GCB remains unclear. This study was designed to elucidate the mechanism of EMT-related GCB resistance in bladder cancer and identify a potential phytochemical to modulate drug sensitivity. The biological effects of ellagic acid (EA) or its combined effects with GCB were compared in GCB-resistant cells and the GCB-sensitive line in terms of cell viability, apoptosis, motility, and in vivo tumorigenicity. The molecular regulation of EMT-related GCB resistance was evaluated at both the mRNA and protein expression levels. Our results indicated that TGF-β/Smad induced the overactivation of EMT in GCB-resistant cells and reduced the expression of GCB influx transporters (hCNT1 and hENT1). Moreover, ellagic acid (EA) inhibited the TGF-β signaling pathway both in vitro and in vivo by reducing Smad2, Smad3, and Smad4 expression and thereby resensitized GCB sensitivity. In conclusion, our results demonstrate that TGF-β/Smad-induced EMT contributes to GCB resistance in bladder cancer by reducing GCB influx and also elucidate the novel mechanisms of EA-mediated inhibition of TGF-β/Smad-induced EMT to overcome GCB resistance. Our study warrants further investigation of EA as an effective therapeutic adjuvant agent for overcoming GCB resistance in bladder cancer.


2012 ◽  
Vol 2012 ◽  
pp. 1-10 ◽  
Author(s):  
Erica di Martino ◽  
Darren C. Tomlinson ◽  
Margaret A. Knowles

Fibroblast growth factors (FGFs) orchestrate a variety of cellular functions by binding to their transmembrane tyrosine-kinase receptors (FGFRs) and activating downstream signalling pathways, including RAS/MAPK, PLCγ1, PI3K, and STATs. In the last ten years, it has become clear that FGF signalling is altered in a high proportion of bladder tumours. Activating mutations and/or overexpression ofFGFR3are common in urothelial tumours with low malignant potential and low-stage and -grade urothelial carcinomas (UCs) and are associated with a lower risk of progression and better survival in some subgroups.FGFR1is not mutated in UC, but overexpression is frequent in all grades and stages and recent data indicate a role in urothelial epithelial-mesenchymal transition.In vitroandin vivostudies have shown that FGFR inhibition has cytotoxic and/or cytostatic effects in FGFR-dependent bladder cancer cells and FGFR-targeted agents are currently being investigated in clinical studies for the treatment of UC. Urine-based tests detecting commonFGFR3mutations are also under development for surveillance of low-grade and -stage tumours and for general population screening. Overall, FGFRs hold promise as therapeutic targets, diagnostic and prognostic markers, and screening tools for early detection and clinical management of UC.


Sign in / Sign up

Export Citation Format

Share Document