scholarly journals A self-amplified nanocatalytic system for achieving “1 + 1 + 1 > 3” chemodynamic therapy on triple negative breast cancer

2021 ◽  
Vol 19 (1) ◽  
Author(s):  
Lulu Zhou ◽  
Jinjin Chen ◽  
Yunhao Sun ◽  
Keke Chai ◽  
Zhounan Zhu ◽  
...  

Abstract Background Chemodynamic therapy (CDT), employing Fenton or Fenton-like catalysts to convert hydrogen peroxide (H2O2) into toxic hydroxyl radicals (·OH) to kill cancer cells, holds great promise in tumor therapy due to its high selectivity. However, the therapeutic effect is significantly limited by insufficient intracellular H2O2 level in tumor cells. Fortunately, β-Lapachone (Lapa) that can exert H2O2-supplementing functionality under the catalysis of nicotinamide adenine dinucleotide (phosphate) NAD(P)H: quinone oxidoreductase-1 (NQO1) enzyme offers a new idea to solve this problem. However, extensive DNA damage caused by high levels of reactive oxygen species can trigger the “hyperactivation” of poly(ADP-ribose) polymerase (PARP), which results in the severe interruption of H2O2 supply and further the reduced efficacy of CDT. Herein, we report a self-amplified nanocatalytic system (ZIF67/Ola/Lapa) to co-deliver the PARP inhibitor Olaparib (Ola) and NQO1-bioactivatable drug Lapa for sustainable H2O2 production and augmented CDT (“1 + 1 + 1 > 3”). Results The effective inhibition of PARP by Ola can synergize Lapa to enhance H2O2 formation due to the continuous NQO1 redox cycling. In turn, the high levels of H2O2 further react with Co2+ to produce the highly toxic ·OH by Fenton-like reaction, dramatically improving CDT. Both in vitro and in vivo studies demonstrate the excellent antitumor activity of ZIF67/Ola/Lapa in NQO1 overexpressed MDA-MB-231 tumor cells. Importantly, the nanocomposite presents minimal systemic toxicity in normal tissues due to the low NQO1 expression. Conclusions This design of nanocatalytic system offers a new paradigm for combing PARP inhibitor, NQO1-bioactivatable drug and Fenton-reagents to obtain sustained H2O2 generation for tumor-specific self-amplified CDT. Graphic Abstract

2019 ◽  
Vol 65 (5) ◽  
pp. 760-765
Author(s):  
Margarita Tyndyk ◽  
Irina Popovich ◽  
A. Malek ◽  
R. Samsonov ◽  
N. Germanov ◽  
...  

The paper presents the results of the research on the antitumor activity of a new drug - atomic clusters of silver (ACS), the colloidal solution of nanostructured silver bisilicate Ag6Si2O7 with particles size of 1-2 nm in deionized water. In vitro studies to evaluate the effect of various ACS concentrations in human tumor cells cultures (breast cancer, colon carcinoma and prostate cancer) were conducted. The highest antitumor activity of ACS was observed in dilutions from 2.7 mg/l to 5.1 mg/l, resulting in the death of tumor cells in all studied cell cultures. In vivo experiments on transplanted Ehrlich carcinoma model in mice consuming 0.75 mg/kg ACS with drinking water revealed significant inhibition of tumor growth since the 14th day of experiment (maximally by 52% on the 28th day, p < 0.05) in comparison with control. Subcutaneous injections of 2.5 mg/kg ACS inhibited Ehrlich's tumor growth on the 7th and 10th days of the experiment (p < 0.05) as compared to control.


Pharmaceutics ◽  
2019 ◽  
Vol 12 (1) ◽  
pp. 21 ◽  
Author(s):  
Yumei Lian ◽  
Xuerui Wang ◽  
Pengcheng Guo ◽  
Yichen Li ◽  
Faisal Raza ◽  
...  

Arsenic trioxide (ATO) has a significant effect on the treatment of acute promyelocytic leukemia (APL) and advanced primary liver cancer, but it still faces severe side effects. Considering these problems, red blood cell membrane-camouflaged ATO-loaded sodium alginate nanoparticles (RBCM-SA-ATO-NPs, RSANs) were developed to relieve the toxicity of ATO while maintaining its efficacy. ATO-loaded sodium alginate nanoparticles (SA-ATO-NPs, SANs) were prepared by the ion crosslinking method, and then RBCM was extruded onto the surface to obtain RSANs. The average particle size of RSANs was found to be 163.2 nm with a complete shell-core bilayer structure, and the average encapsulation efficiency was 14.31%. Compared with SANs, RAW 264.7 macrophages reduced the phagocytosis of RSANs by 51%, and the in vitro cumulative release rate of RSANs was 95% at 84 h, which revealed a prominent sustained release. Furthermore, it demonstrated that RSANs had lower cytotoxicity as compared to normal 293 cells and exhibited anti-tumor effects on both NB4 cells and 7721 cells. In vivo studies further showed that ATO could cause mild lesions of main organs while RSANs could reduce the toxicity and improve the anti-tumor effects. In brief, the developed RSANs system provides a promising alternative for ATO treatment safely and effectively.


2015 ◽  
Vol 33 (7_suppl) ◽  
pp. 205-205
Author(s):  
Thomas Nelius ◽  
Courtney Jarvis ◽  
Dalia Martinez-Marin ◽  
Stephanie Filleur

205 Background: Docetaxel/DTX and cabazitaxel/CBZ have shown promise in the treatment of metastatic Castration-Refractory Prostate Cancer/mCPRC however, comparative studies are missing. Toxicities of these drugs are significant, urging the need to modify taxane regimens. Recently, low-dose metronomic/LDM treatments using conventional chemotherapeutic drugs have shown benefits in CPRC in improving the effect of anti-angiogenic agents. Previously, we have demonstrated that LDM-DTX in combination with PEDF curbs significantly CRPC growth, limits metastases formation and prolongs survival in vivo. In this study, we intended to compare the cytotoxic effect of CBZ and DTX on CRPC cells in vitro and CL1 tumors in vivo. Methods: PC3, DU145 cell lines were from ATCC.CL1 cells were obtained from androgen-deprived LNCaP cells. Cell proliferation was assessed by crystal violet staining and cell cycle analyses. In vitro cytotoxicity assays were performed on CL1 cells/RAW264.7 macrophages co-cultures treated with PEDF and increasing doses of taxanes. For the in vivo studies, CL1 cells were engineered to stably express the DsRed Express protein +/- PEDF. PEDF anti-tumor effects were assessed on s.c. xenografts treated with DTX (5mg/kg ip ev. 4 day) as reference, CBZ (5mg/kg ip ev. 4 days, 1mg/kg for 10 days, 0.5mg/kg q.a.d. and 0.1mg/kg daily) or placebo. Results: CBZ limits cell proliferation with a greater efficacy than DTX in all CRPC cell lines tested. DU145 presented the largest difference. High doses of taxane blocked tumor cells in mitosis, whereas LDM increased the SubG1 population. This effect was significantly higher in DU145 cells treated with CBZ. In vivo, 5mg/kg CBZ delayed tumor growth more efficiently than 5mg/kg DTX. PEDF/5mg/kg CBZ markedly delayed tumor growth compared to all treatments. Finally, engulfment of tumor cells by macrophages was higher in combined treatments suggesting an inflammation-related process. Conclusions: CBZ is more efficient than DTX both in vitro and in vivo.The data also reinforce PEDF as a promising anti-neoplasic agent in combination with LDM taxane chemotherapies.


2020 ◽  
Vol 38 (15_suppl) ◽  
pp. e18108-e18108
Author(s):  
Michael Driscoll Toboni ◽  
Barbara Blachut ◽  
Mary M Mullen ◽  
Jo'an Tankou ◽  
Hollie M Noia ◽  
...  

e18108 Background: Evidence suggests DNA repair is a therapeutic target in endometrial cancer (EC). Given this, we determined whether combination therapy with AVB500, an AXL inhibitor, could improve response in a uterine serous cancer (USC) model. Methods: Two USC cell lines (ARK1 & ARK4) were treated with AVB500 (Aravive Biologics, Houston, TX) in combination with the poly ADP ribose polymerase (PARP) inhibitor, olaparib. Colony forming assays were assessed after 4 days of treatment with either AVB500 alone, olaparib alone or combination treatment (olaparib + AVB500); colonies were stained and absorbance was obtained to calculate relative cell viability using Graph Pad Prism. Baseline homologous recombination (HR) status was determined after radiating cells with 10Gy and identifying RAD51 foci by immunofluorescence (IF). Cell lines were considered to be HR proficient if over 30% of the cells expressed RAD51 ( > 5 foci per cell). IF was conducted using a Leica confocal microscope and foci were quantified using FociCounter. In vivo studies were performed using NOD-SCID mice injected with 1 x 107 ARK1 cells intraperitoneally followed by treatment q3 days for a 14 and 21 day treatment period. Treatment groups were vehicle control, AVB500 alone, olaparib alone and olaparib with AVB500. Results: The absorbance for olaparib + AVB500 was significantly less than the olaparib only group in two assays involving ARK1s (0.417nm vs 0.756nm, p = 0.001; 0.320nm vs 0.620nm, p = 0.008) as well as in ARK4s (0.186nm vs 0.641nm, p = 0.003). The HR assay indicated both cell lines were HR proficient. After baseline HR proficiency was established, the cell lines were pretreated with AVB500 prior to radiation. When compared to cells without treatment with AVB500, IF showed a decrease in RAD51 foci per cell in ARK1 (2.7 vs 7.3, p = 0.0003) and ARK4 (6.3 vs 13.0, p = 0.0054). The proportion of ARK1 cells expressing RAD51 decreased to 21%, indicating HR deficiency. Lastly, NOD-SCID mice receiving olaparib + AVB500 had less tumor weight than those treated with olaparib alone (0.008g vs 0.138g, p = 0.002) and AVB500 alone (0.008g vs 0.145g, p = 0.0006) in a 14 day and a 21 day treatment period (0.212g vs 0.586g, p = 0.027 and 0.212 vs 0.494g, p = 0.005, respectively). Conclusions: HR proficient USC cell lines treated in vitro and in vivo with the combination of AVB500 and olaparib demonstrate an improved response to olaparib or AVB500 alone with a greater decrease in tumor burden. AVB500 appears to induce HR deficiency. Additional therapeutic and mechanistic experiments are ongoing.


2020 ◽  
Author(s):  
Fangpeng Shu ◽  
Taowei Yang ◽  
Xuefeng Zhang ◽  
Wenbin Chen ◽  
Kaihui Wu ◽  
...  

Abstract The integration of multiple functions with organic polymers-based nanoagent holds great potential to potentiate its therapeutic efficacy, but still remains challenges. In the present study, we design and prepare an organic nanoagent with oxygen-evolved and targeted ability for improved phototherapeutic efficacy. The iron ions doped poly diaminopyridine (FeD) is prepared by oxidize polymerization and modified with hyaluronic acid (HA). The obtained FeDH appears uniform morphology and size. Its excellent colloidal stability and biocompatibility are demonstrated. Specifically, the FeDH exhibits catalase-like activity in the presence of hydrogen peroxide. After loading of photosensitizer indocyanine green (ICG), the ICG@FeDH not only demonstrates favorable photothermal effect, but also shows improved generation ability of reactive oxygen species (ROS) under near-infrared laser irradiation. Moreover, the targeted uptake of ICG@FeDH in tumor cells is directly observed. As consequence, the superior phototherapeutic efficacy of the targeted ICG@FeDH over non-targeted counterparts is also confirmed in vitro and in vivo. Hence, the results demonstrate that the developed nanoagent rationally integrates the targeted ability, oxygen-evolved capacity and combined therapy in one system, offering a new paradigm of polymer-based nanomedicine for tumor therapy.


2021 ◽  
Vol 22 (22) ◽  
pp. 12277
Author(s):  
En-Shao Liu ◽  
Nai-Ching Chen ◽  
Tzu-Ming Jao ◽  
Chien-Liang Chen

Medial vascular calcification has emerged as a key factor contributing to cardiovascular mortality in patients with chronic kidney disease (CKD). Vascular smooth muscle cells (VSMCs) with osteogenic transdifferentiation play a role in vascular calcification. Nicotinamide adenine dinucleotide phosphate (NADPH) oxidase inhibitors reduce reactive oxygen species (ROS) production and calcified-medium–induced calcification of VSMCs. This study investigates the effects of dextromethorphan (DXM), an NADPH oxidase inhibitor, on vascular calcification. We used in vitro and in vivo studies to evaluate the effect of DXM on artery changes in the presence of hyperphosphatemia. The anti-vascular calcification effect of DXM was tested in adenine-fed Wistar rats. High-phosphate medium induced ROS production and calcification of VSMCs. DXM significantly attenuated the increase in ROS production, the decrease in ATP, and mitochondria membrane potential during the calcified-medium–induced VSMC calcification process (p < 0.05). The protective effect of DXM in calcified-medium–induced VSMC calcification was not further increased by NADPH oxidase inhibitors, indicating that NADPH oxidase mediates the effect of DXM. Furthermore, DXM decreased aortic calcification in Wistar rats with CKD. Our results suggest that treatment with DXM can attenuate vascular oxidative stress and ameliorate vascular calcification.


2019 ◽  
Vol 21 (Supplement_6) ◽  
pp. vi277-vi277
Author(s):  
Joelle P Straehla ◽  
Natalie Boehnke ◽  
Tamara G Dacoba ◽  
Paula T Hammond

Abstract Platinum-based agents remain a key component of therapy for children with medulloblastoma, despite significant systemic side effects and only modest blood-brain barrier (BBB) penetration. Cisplatin has a cerebrospinal fluid-to-plasma ratio <5% and dose-limiting side effects of nephrotoxicity, ototoxicity, and myelosuppression. Improving delivery of cisplatin across the BBB and selectively accumulating in tumors could improve its therapeutic index. To this end, we are leveraging chemical engineering techniques to rationally design cisplatin nanoparticles (NPs) to cross the BBB and preferentially enter medulloblastoma tumor cells. Using the layer-by-layer (LbL) platform to ‘wrap’ polyelectrolytes around a NP core by iterative electrostatic adsorption, we screened six negatively charged polypeptide and polysaccharide outer layers in medulloblastoma cell lines. Poly-L-aspartic acid (PLD) layered NPs had significant accumulation in tumor cells after 24 hours incubation, with an uptake index of 18±4 over unlayered control NPs. Next, we generated propargyl-functionalized PLD and used click chemistry to covalently conjugate the BBB shuttle ligands glutathione, angiopep-2, and transferrin, which have been shown to mediate transcytosis across brain endothelial cells. PLD layered NPs functionalized with angiopep-2 and transferrin had enhanced uptake in medulloblastoma tumor cells and NPs functionalized with glutathione were non-inferior to PLD layered NPs. After incubation with endothelial cells in vitro, all three BBB shuttle ligands enhanced uptake of PLD layered NPs over unlayered and non-functionalized control NPs. We then incorporated cisplatin into the nanoparticle core of this platform. Cisplatin-loaded NPs with PLD layering and ligand functionalization were more effective than free cisplatin as measured by IC50 over 72 hours in culture, and led to faster apoptosis as assessed by flow cytometry with annexin V and propidium iodide staining. In summary, functionalized nanoparticles are a promising platform to modulate drug delivery to medulloblastoma. In vivo studies using an orthotopic xenograft model are underway to investigate biodistribution, efficacy, and toxicity.


2016 ◽  
Vol 21 (5) ◽  
pp. 250-252
Author(s):  
N. Yu Anisimova ◽  
M. V Kiselevskiy ◽  
Amir G. Abdullaev ◽  
N. V Malakhova ◽  
S. M Sitdikova ◽  
...  

Introduction. Results of the systemic chemotherapy in the peritoneum canceromatosis are unsatisfactory because of poor penetration of anticancer drugs in serous cavities due to the presence ofperitoneal-plasma barrier. One of the possible ways to enhance the action cytostatic agents is the use of chemotherapy and hyperthermia, which, according to some data, has an own cytotoxic effect. The purpose of the study. The study of the effect ofdifferent modes of hyperthermia on the physiological activity of transplantable lines of tumor and non-transformed cells. Results. Analysis of the impact of hyperthermia on the physiological activity of transplantable lines of tumor and the non-transformed cells in vitro and in vivo studies demonstrated that along with the gain in the level and time of the temperature exposure as the degree of damage as tumor cell mortality rate increases. In this study the most effective treatment was as follows: the temperature is above 45°C with the exposure of more than 2 hours, which is difficult to achieve in practice due to the limited tolerance of healthy tissues. Conclusion. With the use of hyperthermia in monoregimen it is not possible to achieve effective levels of the temperature impact, which could hardly have a significant inhibitory effect on tumor cells.


Author(s):  
O. Cohen-Inbar

Glioblastoma Multiforme is the most common malignant primary brain tumor, having a mean overall survival <2 years. The lack of an efficient immune response against the tumor have been attributed to its immunosuppressive capabilities and an immunosuppressing local environment. Aim: We set out to design a chimeric molecule that recognizes and binds tissue inducible metalloproteinase known to be induced in GBM cells (MMP-2) on one end. Its other end, the effector domain, mobilizes and recruits cytotoxic T-cells to mount an effective anti-tumor reaction. Methods: The targeting moiety is the small 36-amino acids Chlorotoxin, derived from the venom of the Israeli Yellow scorpion. The effector end is a single chain HLA-A2 (Human leukocyte antigen subtype A2) covalently bound to phosphoprotein-65 derived from the cytomegalovirus, to which most of the human population has developed a specific immune response. Results: The molecular construct was cloned and expressed in E.coli. The protein product was isolated, purified, and then folded in vitro. Various activity assays employed demonstrated retained activity of each domain, including flow-cytometry, intracellular staining, fluorescence immunohistochemistry, radiolabeled toxicity assays etc. Initial in-vivo studies show great promise. Conclusions: We present a proof of concept study for a new immunotherapy approach to battle GBM. A molecular construct which contains a non-antibody compact and highly specific targeting domain, combined with the ability to recruit anti-CMV T-cell lymphocyte population. The recruitment of potent memory CTL’s to the tumor’s milieu may prove resistant to the previously described local immunosuppressive environment brought about by the tumor.


2017 ◽  
Vol 76 (1-2) ◽  
pp. 19-28 ◽  
Author(s):  
Agnieszka Boś-Liedke ◽  
Magdalena Walawender ◽  
Anna Woźniak ◽  
Dorota Flak ◽  
Jacek Gapiński ◽  
...  

Abstract Oxygenation is one of the most important physiological parameters of biological systems. Low oxygen concentration (hypoxia) is associated with various pathophysiological processes in different organs. Hypoxia is of special importance in tumor therapy, causing poor response to treatment. Triaryl methyl (TAM) derivative radicals are commonly used in electron paramagnetic resonance (EPR) as sensors for quantitative spatial tissue oxygen mapping. They are also known as magnetic resonance imaging (MRI) contrast agents and fluorescence imaging compounds. We report the properties of the TAM radical tris(2,3,5,6-tetrachloro-4-carboxy-phenyl)methyl, (PTMTC), a potential multimodal (EPR/fluorescence) marker. PTMTC was spectrally analyzed using EPR and characterized by estimation of its sensitivity to the oxygen in liquid environment suitable for intravenous injection (1 mM PBS, pH = 7.4). Further, fluorescent emission of the radical was measured using the same solvent and its quantum yield was estimated. An in vitro cytotoxicity examination was conducted in two cancer cell lines, HT-29 (colorectal adenocarcinoma) and FaDu (squamous cell carcinoma) and followed by uptake studies. The stability of the radical in different solutions (PBS pH = 7.4, cell media used for HT-29 and FaDu cells culturing and cytotoxicity procedure, full rat blood and blood plasma) was determined. Finally, a primary toxicity test of PTMTC was carried out in mice. Results of spectral studies confirmed the multimodal properties of PTMTC. PTMTC was demonstrated to be not absorbed by cancer cells and did not interfere with luciferin-luciferase based assays. Also in vitro and in vivo tests showed that it was non-toxic and can be freely administrated till doses of 250 mg/kg BW via both i.v. and i.p. injections. This work illustrated that PTMTC is a perfect candidate for multimodal (EPR/fluorescence) contrast agent in preclinical studies.


Sign in / Sign up

Export Citation Format

Share Document