scholarly journals α-Fe2O3@Pt heterostructure particles to enable sonodynamic therapy with self-supplied O2 and imaging-guidance

2021 ◽  
Vol 19 (1) ◽  
Author(s):  
Tian Zhang ◽  
Qiang Zheng ◽  
Yike Fu ◽  
Congkun Xie ◽  
Gonglin Fan ◽  
...  

AbstractSonodynamic therapy (SDT), presenting spatial and temporal control of ROS generation triggered by ultrasound field, has attracted considerable attention in tumor treatment. However, its therapeutic efficacy is severely hindered by the intrinsic hypoxia of solid tumor and the lack of smart design in material band structure. Here in study, fine α-Fe2O3 nanoparticles armored with Pt nanocrystals (α-Fe2O3@Pt) was investigated as an alternative SDT agent with ingenious bandgap and structural design. The Schottky barrier, due to its unique heterostructure, suppresses the recombination of sono-induced electrons and holes, enabling superior ROS generation. More importantly, the composite nanoparticles may effectively trigger a reoxygenation phenomenon to supply sufficient content of oxygen, favoring the ROS induction under the hypoxic condition and its extra role played for ultrasound imaging. In consequence, α-Fe2O3@Pt appears to enable effective tumor inhibition with imaging guidance, both in vitro and in vivo. This study has therefore demonstrated a highly potential platform for ultrasound-driven tumor theranostic, which may spark a series of further explorations in therapeutic systems with more rational material design. Graphical Abstract

2021 ◽  
Vol 19 (1) ◽  
Author(s):  
Tong Chen ◽  
Qiang Chu ◽  
Mengyang Li ◽  
Gaorong Han ◽  
Xiang Li

AbstractElectrodynamic therapy (EDT) has recently emerged as a potential external field responsive approach for tumor treatment. While it presents a number of clear superiorities, EDT inherits the intrinsic challenges of current reactive oxygen species (ROS) based therapeutic treatments owing to the complex tumor microenvironment, including glutathione (GSH) overexpression, acidity and others. Herein for the first time, iron oxide nanoparticles are decorated using platinum nanocrystals (Fe3O4@Pt NPs) to integrate the current EDT with chemodynamic phenomenon and GSH depletion. Fe3O4@Pt NPs can effectively induce ROS generation based on the catalytic reaction on the surface of Pt nanoparticles triggered by electric field (E), and meanwhile it may catalyze intracellular H2O2 into ROS via Fenton reaction. In addition, Fe3+ ions released from Fe3O4@Pt NPs under the acidic condition in tumor cells consume GSH in a rapid fashion, inhibiting ROS clearance to enhance its antitumor efficacy. As a result, considerable in vitro and in vivo tumor inhibition phenomena are observed. This study has demonstrated an alternative concept of combinational therapeutic modality with superior efficacy.


2021 ◽  
Author(s):  
Chao Fang ◽  
Hanjing Kong ◽  
Qiang Chu ◽  
Zefeng Hu ◽  
Yi Zhou ◽  
...  

Abstract Nanoparticles, presenting catalytic activity to induce intracellular oxidative species, have been extensively explored for tumor treatment, but suffer daunting challenges in the limited intracellular H2O2 and thus suppressed therapeutic efficacy. Here in this study, a type of composite nanoparticles, consisting CaO2 core and Co-ferrocene shell, is designed and synthesized for combinational tumor treatment. The findings indicate that CaO2 core can be hydrolyzed to produce large amounts of H2O2 and calcium ions at the acidic tumor sites. Meanwhile, Co-ferrocene shell acts as an excellent Fenton catalyst, inducing considerable ROS generation following its reaction with H2O2. Excessive cellular oxidative stress triggers agitated calcium accumulation in addition to the calcium ions released from the particles. The combined effect of intracellular ROS and calcium overload causes significant tumor inhibition both in vitro and in vivo.


2021 ◽  
Vol 19 (1) ◽  
Author(s):  
Hanjing Kong ◽  
Chao Fang ◽  
Qiang Chu ◽  
Zefeng Hu ◽  
Yike Fu ◽  
...  

AbstractNanoparticles, presenting catalytic activity to induce intracellular oxidative species, have been extensively explored for tumor treatment, but suffer daunting challenges in the limited intracellular H2O2 and thus suppressed therapeutic efficacy. Here in this study, a type of composite nanoparticles, consisting CaO2 core and Co-ferrocene shell, is designed and synthesized for combinational tumor treatment. The findings indicate that CaO2 core can be hydrolyzed to produce large amounts of H2O2 and calcium ions at the acidic tumor sites. Meanwhile, Co-ferrocene shell acts as an excellent Fenton catalyst, inducing considerable ROS generation following its reaction with H2O2. Excessive cellular oxidative stress triggers agitated calcium accumulation in addition to the calcium ions released from the particles. The combined effect of intracellular ROS and calcium overload causes significant tumor inhibition both in vitro and in vivo.


2021 ◽  
Vol 21 (5) ◽  
pp. 3035-3040
Author(s):  
Jin Cao ◽  
Qiwen Pan ◽  
Mingxue Zheng ◽  
Song Shen ◽  
Xueyong Qi

The development of novel sonosensitizers with safety and efficiency is a key problem in anti-tumor sonodynamic therapy. Phycocyanin (PC) has been proved to have the singlet oxygen radicals (ROS) generation ability, and the potential of PC as a novel sonosensitizer has been investigated. To overcome the disadvantages of PC in vivo, such as poor stability and low half-life, PC nanoparticles (PCNP) were prepared by the cross-linking method. According to the results, PCNP has been found with good morphology, good particle size distribution and good stability. Human breast cancer cell line MCF-7 was used to investigate PCNP cell uptake ability. ROS generation and cytotoxicity under ultrasonic irradiation (sonotoxicity) were also studied on this cell. Under the condition of 0.75 w/cm2 ultrasound, PCNP has a good ROS productivity and is equivalent to the sonotoxicity of the known sonosensitizer hematoporphyrin monomethyl Ether (HMME). In conclusion, PCNP is expected to be developed as an effective sonosensitizer for the sonodynamic therapy of tumors.


2021 ◽  
Vol 6 (1) ◽  
Author(s):  
Dezhong Wang ◽  
Yuan Yin ◽  
Shuyi Wang ◽  
Tianyang Zhao ◽  
Fanghua Gong ◽  
...  

AbstractAs a classically known mitogen, fibroblast growth factor 1 (FGF1) has been found to exert other pleiotropic functions such as metabolic regulation and myocardial protection. Here, we show that serum levels of FGF1 were decreased and positively correlated with fraction shortening in diabetic cardiomyopathy (DCM) patients, indicating that FGF1 is a potential therapeutic target for DCM. We found that treatment with a FGF1 variant (FGF1∆HBS) with reduced proliferative potency prevented diabetes-induced cardiac injury and remodeling and restored cardiac function. RNA-Seq results obtained from the cardiac tissues of db/db mice showed significant increase in the expression levels of anti-oxidative genes and decrease of Nur77 by FGF1∆HBS treatment. Both in vivo and in vitro studies indicate that FGF1∆HBS exerted these beneficial effects by markedly reducing mitochondrial fragmentation, reactive oxygen species (ROS) generation and cytochrome c leakage and enhancing mitochondrial respiration rate and β-oxidation in a 5’ AMP-activated protein kinase (AMPK)/Nur77-dependent manner, all of which were not observed in the AMPK null mice. The favorable metabolic activity and reduced proliferative properties of FGF1∆HBS testify to its promising potential for use in the treatment of DCM and other metabolic disorders.


2019 ◽  
Vol 21 (Supplement_6) ◽  
pp. vi97-vi97
Author(s):  
Satoshi Suehiro ◽  
Takanori Ohnishi ◽  
Akihiro Inoue ◽  
Daisuke Yamashita ◽  
Masahiro Nishikawa ◽  
...  

Abstract OBJECTIVE High invasiveness of malignant gliomas frequently causes local tumor recurrence. To control such recurrence, novel therapies targeted toward infiltrating glioma cells are required. Here, we examined cytotoxic effects of sonodynamic therapy (SDT) combined with a sonosensitizer, 5-aminolevulinic acid (5-ALA), on malignant gliomas both in vitro and in vivo. METHODS In vitro cytotoxicity of 5-ALA-SDT was evaluated in U87 and U251 glioma cells and in U251Oct-3/4 glioma stemlike cells. Treatment-related apoptosis was analyzed using flow cytometry. Intracellular reactive oxygen species (ROS) were measured and the role of ROS in treatment-related cytotoxicity was examined. Effects of 5-ALA-SDT with high-intensity focused ultrasound (HIFU) on tumor growth, survival of glioma-transplanted mice, and histological features of the mouse brains were investigated. RESULTS The 5-ALA-SDT inhibited cell growth and changed cell morphology. Flow cytometric analysis indicated that 5-ALA-SDT induced apoptotic cell death. The 5-ALA-SDT generated higher ROS than in the control group, and inhibition of ROS generation completely eliminated the cytotoxic effects of 5-ALA-SDT. In the in vivo study, 5-ALA-SDT with HIFU greatly prolonged survival of the tumor-bearing mice compared with that of the control group (p < 0.05). Histologically, 5-ALA-SDT produced mainly necrosis of the tumor tissue in the focus area and induced apoptosis of the tumor cells in the perifocus area around the target of the HIFU-irradiated field. Normal brain tissues around the ultrasonic irradiation field of HIFU remained intact. CONCLUSIONS The 5-ALA-SDT was cytotoxic toward malignant gliomas. Generation of ROS by the SDT was thought to promote apoptosis of glioma cells. The 5-ALA-SDT with HIFU induced tumor necrosis in the focus area and apoptosis in the perifocus area of the HIFU-irradiated field. These results suggest that 5-ALA-SDT with HIFU may present a less invasive and tumor-specific therapy, not only for a tumor mass but also for infiltrating tumor cells in malignant gliomas.


2021 ◽  

Myocardial infarction is a serious representation of cardiovescular disease, MicroRNAs play a role in modifying I/R injury and myocardial infarct remodeling. The present study therefore examined the potential role of miR-187 in cardiac I/R injury and its underlying mechanisms. miR-187 was inhibited or overexpressed in cardiomyocytes H/R models by pretreatment with miR-187 mimic or inhibitor to confirm the function of miR-187 in H/R. DYRK2 was inhibited or overexpressed in cardiomyocytes H/R models by pretreatment with DYRK2 inhibitor. A myocardium I/R mouse model was established. Circulating levels of miR-187 or DYRK2 was detected by quantitative realtime PCR and protein expression was detected by western blotting. The cell viability in all groups was determined by MTT assay and the apoptosis ratio was detected by flow cytometry after staining with Annexin V-FITC. The effect of miR-187 on cellular ROS generation was examined by DCFH-DA. The level of lipid peroxidation and SOD expression were determined by MDA and SOD assay. The findings indicated that miR-187 may be a possible regulator in the protective effect of H/R-induced cardiomyocyte apoptosis, cellular oxidative stress and leaded to DYRK2 suppression at a posttranscriptional level. Moreover, the improvement of miR-187 on H/R-induced cardiomyocyte injury contributed to the obstruction of DYRK2 expression. In addition, these results identified DYRK2 as the functional downstream target of miR-187 regulated myocardial infarction and oxidative stress.These present work provided the first insight into the function of miR-187 in successfully protect cardiomyocyte both in vivo and in vitro, and such a protective effect were mediated through the regulation of DYRK2 expression.


2018 ◽  
Vol 51 (6) ◽  
pp. 2938-2954 ◽  
Author(s):  
Jing Shen ◽  
Shoubo Cao ◽  
Xin Sun ◽  
Bo Pan ◽  
Jingyan Cao ◽  
...  

Background/Aims: Sonodynamic therapy (SDT) is expected to be a new method to solve the clinical problems caused by advanced metastasis in patients with lung cancer. The use of ultrasound has the advantage of being noninvasive, with deep-penetration properties. This study explored the anti-tumor effect of SDT with a new sonosensitizer, sinoporphyrin sodium (DVDMS), on the human small cell lung cancer H446 cell line in vitro and in vivo. Methods: Absorption of DVDMS was detected by a fluorescence spectrophotometer, and DVDMS toxicity was determined using a Cell Counting Kit-8. Mitochondrial membrane potential (MMP) was assessed using the JC-1 fluorescent probe. Cell apoptosis was measured by flow cytometry, and apoptosis-related proteins were detected by western blotting. The expression of cytokines was measured using an enzyme-linked immunosorbent assay and quantitative real-time PCR. To verify the in vitro results, we detected tumor volumes and weight changes in a xenograft nude mouse model after DVDMS-SDT. Hematoxylin and eosin staining was used to observe changes to the tumor, heart, liver, spleen, lung, and kidney of the mice, and immunohistochemistry was used to examine changes in the expression of tumor CD34 and receptor-interacting protein kinase-3 (RIP3), while terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling was used to observe apoptosis in tumor tissues. Results: DVDMS-SDT-treated H446 cells increased the rate of cellular apoptosis and the levels of reactive oxygen species (ROS), cleaved caspase-3, cleaved caspase-8, cleaved caspase-9, and caspase-10, and decreased the levels of MMP, RIP3, B-cell lymphoma 2, vascular endothelial growth factor, and tumor necrosis factor-α. The sonotoxic effect was mediated by ROS and was reduced by a ROS scavenger (N-acetyl-L-cysteine). In the in vivo mouse xenograft model, DVDMS-SDT showed efficient anti-cancer effects with no visible side effects. Conclusion: DVDMS-SDT induced apoptosis in H446 cells, in part by targeting mitochondria through the mitochondria-mediated apoptosis signaling pathway, and the extrinsic apoptosis pathway was also shown to be involved. Both apoptosis and changes in RIP3 expression were closely related to the generation of ROS. DVDMS-SDT will be advantageous for the management of small cell lung cancer due to its noninvasive characteristics.


Cells ◽  
2021 ◽  
Vol 10 (11) ◽  
pp. 3247
Author(s):  
Lingxiao Ye ◽  
Zhengxin Zhu ◽  
Xiaochuan Chen ◽  
Haoran Zhang ◽  
Jiaqi Huang ◽  
...  

Binding of programmed cell death ligand 1 (PD-L1) to its receptor programmed cell death protein 1 (PD-1) can lead to the inactivation of cytotoxic T lymphocytes, which is one of the mechanisms for immune escape of tumors. Immunotherapy based on this mechanism has been applied in clinic with some remaining issues such as drug resistance. Exosomal PD-L1 derived from tumor cells is considered to play a key role in mediating drug resistance. Here, the effects of various tumor-derived exosomes and tumor-derived exosomal PD-L1 on tumor progression are summarized and discussed. Researchers have found that high expression of exosomal PD-L1 can inhibit T cell activation in in vitro experiments, but the function of exosomal PD-L1 in vivo remains controversial. In addition, the circulating exosomal PD-L1 has high potential to act as an indicator to evaluate the clinical effect. Moreover, therapeutic strategy targeting exosomal PD-L1 is discussed, such as inhibiting the biogenesis or secretion of exosomes. Besides, some specific methods based on the strategy of inhibiting exosomes are concluded. Further study of exosomal PD-L1 may provide an effective and safe approach for tumor treatment, and targeting exosomal PD-L1 by inhibiting exosomes may be a potential method for tumor treatment.


Blood ◽  
2021 ◽  
Author(s):  
JongBok Lee ◽  
Dilshad H. Khan ◽  
Rose Hurren ◽  
Mingjing Xu ◽  
Yoosu Na ◽  
...  

Venetoclax, a Bcl-2 inhibitor, in combination with the hypomethylating agent, Azacytidine, achieves complete response with or without count recovery in approximately 70% of treatment-naïve elderly patients unfit for conventional intensive chemotherapy. However, the mechanism of action of this drug combination is not fully understood. We discovered that Venetoclax directly activated T cells to increase their cytotoxicity against AML in vitro and in vivo. Venetoclax enhanced T cell effector function by increasing ROS generation through inhibition of respiratory chain supercomplexes formation. In addition, Azacytidine induced a viral-mimicry response in AML cells by activating the STING/cGAS pathway, thereby rendering the AML cells more susceptible to T-cell mediated cytotoxicity. Similar findings were seen in patients treated with Venetoclax as this treatment increased ROS generation and activated T cells. Collectively, this study demonstrates a new immune mediated mechanism of action for Venetoclax and Azacytidine in the treatment of AML and highlights a potential combination of Venetoclax and adoptive cell therapy for patients with AML.


Sign in / Sign up

Export Citation Format

Share Document