scholarly journals Identification and verification of HCAR3 and INSL5 as new potential therapeutic targets of colorectal cancer

2021 ◽  
Vol 19 (1) ◽  
Author(s):  
Xuan Yang ◽  
Wangao Wei ◽  
Shisheng Tan ◽  
Linrui Guo ◽  
Song Qiao ◽  
...  

Abstract Background Colorectal cancer (CRC) is one of the most common cancers of the gastrointestinal tract and ranks third in cancer-related deaths worldwide. This study was conducted to identify novel biomarkers related to the pathogenesis of CRC based upon a bioinformatics analysis, and further verify the biomarkers in clinical tumor samples and CRC cell lines. Methods A series of bioinformatics analyses were performed using datasets from NCBI-GEO and constructed a protein–protein interaction (PPI) network. This analysis enabled the identification of Hub genes, for which the mRNA expression and overall survival of CRC patients data distribution was explored in The Cancer Genome Atlas (TCGA) colon cancer and rectal cancer (COADREAD) database. Furthermore, the differential expression of HCAR3 and INLS5 was validated in clinical tumor samples by Real-time quantitative PCR analysis, western blotting analysis, and immunohistochemistry analysis. Finally, CRC cells over-expressing INSL5 were constructed and used for CCK8, cell cycle, and cell apoptosis validation assays in vitro. Results A total of 286 differentially expressed genes (DEGs) were screened, including 64 genes with increased expression and 143 genes with decreased expression in 2 CRC database, from which 10 key genes were identified: CXCL1, HCAR3, CXCL6, CXCL8, CXCL2, CXCL5, PPY, SST, INSL5, and NPY1R. Among these genes, HCAR3 and INSL5 had not previously been explored and were further verified in vitro. Conclusions HCAR3 expression was higher in CRC tissues and associated with better overall survival of CRC patients. INSL5 expression in normal tissue was higher than that in tumor tissue and its high expression was associated with a better prognosis for CRC. The overexpression of INSL5 significantly inhibited the proliferation and promoted the shearing of PARP of CRC cells. This integrated bioinformatics study presented 10 key hub genes associated with CRC. HCAR3 and INSL5 were expressed in tumor tissue and these were associated with poor survival and warrant further studies as potential therapeutic targets.

2020 ◽  
Author(s):  
Ting Gui ◽  
Chenhe Yao ◽  
Binghan Jia ◽  
Keng Shen

Abstract Background: Though considerable efforts have been made to improve the treatment of epithelial ovarian cancer (EOC), the prognosis of patients has remained poor. Identifying differentially expressed genes (DEGs) involved in EOC progression and exploiting them as novel biomarkers or therapeutic targets for EOC is highly valuable. Methods: Overlapping DEGs were screened out from three independent gene expression omnibus (GEO) datasets and subjected to Gene ontology (GO) and Kyoto encyclopedia of genes and genomes (KEGG) pathway enrichment analyses. The protein-protein interactions (PPI) network of DEGs was constructed in the STRING database. The top 20 hub genes were selected using cytoHubba. The expression of hub genes was detected in GEPIA, Oncomine, and human protein atlas (HPA) databases. The relationship of hub genes with the pathological stage and the overall survival and progression-free survival in EOC patients was investigated using the cancer genome atlas data. Results: A total of 306 DEGs were identified, including 265 up-regulated and 41 down-regulated. Through the PPI network analysis, the top 20 genes were screened out, among which 4 hub genes were selected after literature retrieval, including CDC45, CDCA5, KIF4A, ESPL1. The four genes were up-regulated in EOC tissues and the expression of these four genes decreased gradually with the continuous progression of EOC. Survival curves illustrated that patients with a lower level of CDCA5 and ESPL1 had better overall survival and progression-free survival. Conclusions: Two hub genes, CDCA5 and ESPL1, identified as playing tumor-promotive roles, could be utilized as potential novel therapeutic targets for EOC treatment.


PLoS ONE ◽  
2021 ◽  
Vol 16 (6) ◽  
pp. e0253136
Author(s):  
Ting Gui ◽  
Chenhe Yao ◽  
Binghan Jia ◽  
Keng Shen

Background Though considerable efforts have been made to improve the treatment of epithelial ovarian cancer (EOC), the prognosis of patients has remained poor. Identifying differentially expressed genes (DEGs) involved in EOC progression and exploiting them as novel biomarkers or therapeutic targets is of great value. Methods Overlapping DEGs were screened out from three independent gene expression omnibus (GEO) datasets and were subjected to Gene ontology (GO) and Kyoto encyclopedia of genes and genomes (KEGG) pathway enrichment analyses. The protein-protein interactions (PPI) network of DEGs was constructed based on the STRING database. The expression of hub genes was validated in GEPIA and GEO. The relationship of hub genes expression with tumor stage and overall survival and progression-free survival of EOC patients was investigated using the cancer genome atlas data. Results A total of 306 DEGs were identified, including 265 up-regulated and 41 down-regulated. Through PPI network analysis, the top 20 genes were screened out, among which 4 hub genes, which were not researched in depth so far, were selected after literature retrieval, including CDC45, CDCA5, KIF4A, ESPL1. The four genes were up-regulated in EOC tissues compared with normal tissues, but their expression decreased gradually with the continuous progression of EOC. Survival curves illustrated that patients with a lower level of CDCA5 and ESPL1 had better overall survival and progression-free survival statistically. Conclusion Two hub genes, CDCA5 and ESPL1, identified as probably playing tumor-promotive roles, have great potential to be utilized as novel therapeutic targets for EOC treatment.


2021 ◽  
Author(s):  
Yu Zhang ◽  
Jia Luo ◽  
Zhe Liu ◽  
Xudong Liu ◽  
Ying Ma ◽  
...  

Colorectal cancer (CRC) is one of the most common tumors worldwide and is associated with high mortality. Here we performed bioinformatics analysis, which we validated using immunohistochemistry in order to search for hub genes that might serve as biomarkers or therapeutic targets in CRC. Based on data from the Cancer Genome Atlas, we identified 4,832 genes differentially expressed between CRC and normal samples (1,562 up-regulated and 3,270 down-regulated in CRC). Gene ontology analysis showed that up-regulated genes were enriched mainly in organelle fission, cell cycle regulation, and DNA replication; down-regulated genes were enriched primarily in the regulation of ion transmembrane transport and ion homeostasis. Weighted gene co-expression network analysis identified eight gene modules that were associated with clinical characteristics of CRC patients, including brown and blue modules that were associated with cancer onset. Analysis of the latter two hub modules revealed the following six hub genes: adhesion G protein-coupled receptor B3 (BAI3, also known as ADGRB3), cyclin F (CCNF), cytoskeleton-associated protein 2 like (CKAP2L), diaphanous related formin 3 (DIAPH3), oxysterol binding protein-like 3 (OSBPL3), and RERG-like protein (RERGL). Expression levels of these hub genes were associated with prognosis, based on Kaplan-Meier survival analysis of data from the Gene Expression Profiling Interactive Analysis database. Immunohistochemistry of CRC tumor tissues confirmed that OSBPL3 is up-regulated in CRC. Our findings suggest that CCNF, DIAPH3, OSBPL3, and RERGL may be useful as therapeutic targets against CRC. BAI3 and CKAP2L may be novel biomarkers of the disease.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Yu Zhang ◽  
Zhaohui Zhong ◽  
Mei Li ◽  
Jingyi Chen ◽  
Tingru Lin ◽  
...  

AbstractAbnormally expressed and/or phosphorylated Abelson interactor 1 (ABI1) participates in the metastasis and progression of colorectal cancer (CRC). ABI1 presents as at least 12 transcript variants (TSVs) by mRNA alternative splicing, but it is unknown which of them is involved in CRC metastasis and prognosis. Here, we firstly identified ABI1-TSV-11 as a key TSV affecting the metastasis and prognosis of left-sided colorectal cancer (LsCC) and its elevated expression is related to lymph node metastasis and shorter overall survival (OS) in LsCC by analyzing data from The Cancer Genome Atlas and TSVdb. Secondly, ABI1-TSV-11 overexpression promoted LoVo and SW480 cells adhesion and migration in vitro, and accelerated LoVo and SW480 cells lung metastasis in vivo. Finally, mechanism investigations revealed that ABI1-isoform-11 interacted with epidermal growth factor receptor pathway substrate 8 (ESP8) and regulated actin dynamics to affect LoVo and SW480 cells biological behaviors. Taken together, our data demonstrated that ABI1-TSV-11 plays an oncogenic role in LsCC, it is an independent risk factor of prognosis and may be a potential molecular marker and therapeutic target in LsCC.


2021 ◽  
pp. 172460082110054
Author(s):  
Hanyu Zhang ◽  
Mingxing Li ◽  
Parham Jabbarzadeh Kaboli ◽  
Huijiao Ji ◽  
Fukuan Du ◽  
...  

Background: Cluster of differentiation molecules are markers of immune cells that have been identified as a potential immunotherapeutic target for cancer treatment. MicroRNAs are small non-coding RNAs that act as tumor suppressors or oncogenes whose importance in diagnosis, prognosis, and treatment of gastric and colorectal cancers has been widely reported. However, their association with cluster of differentiation molecules in gastrointestinal cancers has not been well studied. Therefore, our study aimed to analyze the relationship between microRNAs and cluster of differentiation molecules in gastrointestinal cancers, and to identify cluster of differentiation molecule-associated microRNAs as prognostic biomarkers for gastrointestinal cancer patients. Methods: Targetscan, Starbase, DIANA microT, and miRDB were used to investigate microRNA profiles that might be correlated with cluster of differentiation molecules in gastrointestinal cancers. Moreover, The Cancer Genome Atlas data analysis was used to investigate the association between cluster of differentiation molecules and microRNA expression in patients with gastric, colon, rectal, pancreatic, and esophageal cancers. The Kaplan–Meier plotter was used to identify the association between overall survival and cluster of differentiation molecule-associated microRNA expression in gastrointestinal cancer patients. Results: miR-200a, miR-559, and miR-1236 were negatively associated with CD86, CD81, and CD160, respectively, in almost all types of gastrointestinal cancers, which were further verified in the in vitro studies by transfecting microRNA mimics in gastric cancer, colon cancer, pancreatic, and esophageal cell lines. Conclusion: Our study showed that miR-200a, miR-1236, and miR-559 are identified as cluster of differentiation-associated microRNAs in gastrointestinal cancers, providing a novel perspective to identify new therapeutic targets for cancer immunotherapy in gastrointestinal cancer patients.


Author(s):  
Atsuhito Uneda ◽  
Kazuhiko Kurozumi ◽  
Atsushi Fujimura ◽  
Kentaro Fujii ◽  
Joji Ishida ◽  
...  

AbstractGlioblastoma (GBM) is the most lethal primary brain tumor characterized by significant cellular heterogeneity, namely tumor cells, including GBM stem-like cells (GSCs) and differentiated GBM cells (DGCs), and non-tumor cells such as endothelial cells, vascular pericytes, macrophages, and other types of immune cells. GSCs are essential to drive tumor progression, whereas the biological roles of DGCs are largely unknown. In this study, we focused on the roles of DGCs in the tumor microenvironment. To this end, we extracted DGC-specific signature genes from transcriptomic profiles of matched pairs of in vitro GSC and DGC models. By evaluating the DGC signature using single cell data, we confirmed the presence of cell subpopulations emulated by in vitro culture models within a primary tumor. The DGC signature was correlated with the mesenchymal subtype and a poor prognosis in large GBM cohorts such as The Cancer Genome Atlas and Ivy Glioblastoma Atlas Project. In silico signaling pathway analysis suggested a role of DGCs in macrophage infiltration. Consistent with in silico findings, in vitro DGC models promoted macrophage migration. In vivo, coimplantation of DGCs and GSCs reduced the survival of tumor xenograft-bearing mice and increased macrophage infiltration into tumor tissue compared with transplantation of GSCs alone. DGCs exhibited a significant increase in YAP/TAZ/TEAD activity compared with GSCs. CCN1, a transcriptional target of YAP/TAZ, was selected from the DGC signature as a candidate secreted protein involved in macrophage recruitment. In fact, CCN1 was secreted abundantly from DGCs, but not GSCs. DGCs promoted macrophage migration in vitro and macrophage infiltration into tumor tissue in vivo through secretion of CCN1. Collectively, these results demonstrate that DGCs contribute to GSC-dependent tumor progression by shaping a mesenchymal microenvironment via CCN1-mediated macrophage infiltration. This study provides new insight into the complex GBM microenvironment consisting of heterogeneous cells.


Biomedicines ◽  
2021 ◽  
Vol 9 (5) ◽  
pp. 453
Author(s):  
Yu-Han Wang ◽  
Shih-Ching Chang ◽  
Muhamad Ansar ◽  
Chin-Sheng Hung ◽  
Ruo-Kai Lin

Colorectal cancer (CRC) arises from chromosomal instability, resulting from aberrant hypermethylation in tumor suppressor genes. This study identified hypermethylated genes in CRC and investigated how they affect clinical outcomes. Methylation levels of specific genes were analyzed from The Cancer Genome Atlas dataset and 20 breast cancer, 16 esophageal cancer, 33 lung cancer, 15 uterine cancer, 504 CRC, and 9 colon polyp tissues and 102 CRC plasma samples from a Taiwanese cohort. In the Asian cohort, Eps15 homology domain-containing protein 3 (EHD3) had twofold higher methylation in 44.4% of patients with colonic polyps, 37.3% of plasma from CRC patients, and 72.6% of CRC tissues, which was connected to vascular invasion and high microsatellite instability. Furthermore, EHD3 hypermethylation was detected in other gastrointestinal cancers. In the Asian CRC cohort, low EHD3 mRNA expression was found in 45.1% of patients and was connected to lymph node metastasis. Multivariate Cox proportional-hazards survival analysis revealed that hypermethylation in women and low mRNA expression were associated with overall survival. In the Western CRC cohort, EHD3 hypermethylation was also connected to overall survival and lower chemotherapy and antimetabolite response rates. In conclusion, EHD3 hypermethylation contributes to the development of CRC in both Asian and Western populations.


2021 ◽  
Author(s):  
Tianhao Li ◽  
Xiaohan Qin ◽  
Cheng Qin ◽  
Bangbo Zhao ◽  
Hongtao Cao ◽  
...  

Abstract Background: Armadillo repeat-containing 10 (ARMC10) is involved in the progression of multiple types of tumors. Pancreatic adenocarcinoma (PAAD) is a lethal disease with poor survival and prognosis.Methods: We acquired the data of ARMC10 in PAAD patients from the cancer genome atlas (TCGA) and gene expression omnibus (GEO) datasets and compared the expression level with normal pancreatic tissues. We evaluated the relevance between ARMC10 expression and clinicopathological factors, immune infiltration degree and prognosis in PAAD.Results: High expression of ARMC10 was relevant to T stage, M stage, pathologic stage, histologic grade, residual tumor, primary therapy outcome (P<0.05) and related to lower Overall-Survival (OS), Disease-Specific Survival (DSS), and Progression-Free Interval (PFI). Gene set enrichment analysis showed that ARMC10 was related to methylation in neural precursor cells (NPC), G alpha (i) signaling events, APC targets, energy metabolism, potassium channels and IL10 synthesis. The expression level of ARMC10 was positively related to the abundance of T helper cells and negatively to that of plasmacytoid dendritic cells (pDCs). Knocking down of ARMC10 could lead to lower proliferation, invasion, migration ability and colony formation rate of PAAD cells in vitro.Conclusions: Our research firstly discovered ARMC10 as a novel prognostic biomarker for PAAD patients and played a crucial role in immune regulation in PAAD.


2021 ◽  
Author(s):  
Xiao-Cheng Wang ◽  
Ya Liu ◽  
Fei-Wu Long ◽  
Liang-Ren Liu ◽  
Chuan-Wen Fan

Background: The relationship between long noncoding RNAs (lncRNAs) and the mRNA stemness index (mRNAsi) in colorectal cancer (CRC) is still unclear. Materials & methods: The mRNAsi, mRNAsi-related lncRNAs and their clinical significance were analyzed by bioinformatic approaches in The Cancer Genome Atlas (TCGA)-COREAD dataset. Results: mRNAsi was negatively related to pathological features but positively related to overall survival and recurrence-free survival in CRC. A five mRNAsi-related lncRNAs prognostic signature was further developed and showed independent prognostic factors related to overall survival in CRC patients, due to the five mRNAsi-related lncRNAs involved in several pathways of the cancer stem cells and malignant cancer cell phenotypes. Conclusion: The present study highlights the potential roles of mRNAsi-related lncRNAs as alternative prognostic markers.


2018 ◽  
Vol 2018 ◽  
pp. 1-7 ◽  
Author(s):  
Yuan He ◽  
Li-Yue Sun ◽  
Jing Wang ◽  
Rui Gong ◽  
Qiong Shao ◽  
...  

Objective. To investigate methylation of the adenomatosis polyposis coli homologue (APC2) promoter and its correlation with prognostic implications in Chinese colorectal cancer (CRC). Methods. The mRNA expression of APC2 in colorectal tissues was evaluated using the database of The Cancer Genome Atlas (TCGA). Methylation analysis of APC2 in tumor (n=66) and corresponding adjacent formalin-fixed and paraffin-embedded (FFPE) tissues (n=44) was performed by Sequenom EpiTYPER® and verified by cloning-based bisulfite sequencing analysis. Demethylation and retrieval of APC2 expression in cell lines HT29, HCT116, and SW480 were treated with 5-aza-2′-deoxycytidine (5-AZC). Results. Analysis of TCGA showed that APC2 mRNA was significantly downregulated in primary tumors when compared to normal tissues (p<0.05). APC2 methylation was upregulated (43.93% vs 7.31%, p<0.05) in tumors compared to adjacent FFPE tissues. In vitro experiments demonstrated that 5-AZC downregulated the methylation of APC2 and retrieved its expression of mRNA and protein levels (p<0.05). Multivariate Cox regression indicated that APC2_CPG_14 was an independent risk factor for overall survival (HR = 6.38, 95% CI: 1.59–25.64, p<0.05). Conclusion. This study indicates that APC2 is hypermethylated and may be a tumorigenesis biomarker for Chinese CRC patients.


Sign in / Sign up

Export Citation Format

Share Document