scholarly journals An assessment of the multifactorial profile of steroid-metabolizing enzymes and steroid receptors in the eutopic endometrium during moderate to severe ovarian endometriosis

Author(s):  
G. Anupa ◽  
Jai Bhagwan Sharma ◽  
Kallol K. Roy ◽  
Jayasree Sengupta ◽  
Debabrata Ghosh

Abstract Background Previous studies of expression profiles of major endometrial effectors of steroid physiology in endometriosis have yielded markedly conflicting conclusions, presumably because the relative effects of type of endometriosis, fertility history and menstrual cycle phases on the measured variables were not considered. In the present study, endometrial mRNA and protein levels of several effectors of steroid biosynthesis and action in patients with stage III-IV ovarian endometriosis (OE) with known fertility and menstrual cycle histories were compared with the levels in control endometrium to test this concept. Methods Endometrial samples were collected from patients without endometriosis (n = 32) or OE stages III-IV (n = 52) with known fertility and cycle histories. qRT-PCR and immunoblotting experiments were performed to measure levels of NR5A1, STAR, CYP19A1, HSD17Bs, ESRs and PGR transcripts and proteins, respectively. Tissue concentrations of steroids (P4, T, E1 and E2) were measured using ELISAs. Results The levels of expression of aromatase and ERβ were lower (P < 0.0001) and 17β-HSD1 (P < 0.0001) and PRA (P < 0.01) were higher in OE endometrium. Lower aromatase levels and higher 17β-HSD1 levels were detected in fertile (aromatase: P < 0.05; 17β-HSD1: P < 0.0001) and infertile (aromatase: P < 0.0001; 17β-HSD1: P < 0.0001) OE endometrium than in the matched control tissues. Both proliferative (PP) and secretory (SP) phase OE samples expressed aromatase (P < 0.0001) and ERβ (PP: P < 0.001; SP: P < 0.01) at lower levels and 17β-HSD1 (P < 0.0001) and PRA (PP: P < 0.01; SP: P < 0.0001) at higher levels than matched controls. Higher 17β-HSD1 (P < 0.01) and E2 (P < 0.05) levels and a lower (P < 0.01) PRB/PRA ratio was observed in infertile secretory phase OE endometrium than in control. Conclusions We report that dysregulated expression of 17β-HSD1 and PGR resulting in hyperestrogenism and progesterone resistance during the secretory phase of the menstrual cycle, rather than an anomaly in aromatase expression, was the hallmark of eutopic endometrium from infertile OE patients. Furthermore, the results provide proof of concept that the fertility and menstrual cycle histories exerted relatively different effects on steroid physiology in the endometrium from OE patients compared with the control subjects.

Reproduction ◽  
2012 ◽  
Vol 143 (4) ◽  
pp. 531-538 ◽  
Author(s):  
Huan Yang ◽  
Yuping Zhou ◽  
Benjiamin Edelshain ◽  
Frederick Schatz ◽  
Charles J Lockwood ◽  
...  

FKBP4 (FKBP52) and FKBP5 (FKBP51) are progestin receptor (PR) co-chaperone proteins that enhance and inhibit, respectively, progestin-mediated transcription by PR. Here, we examinedFKBP4andFKBP5expression in the eutopic endometrium of fertile women with endometriosis and effects of FKBP4 and FKBP5 on the decidualization of human endometrial stromal cells (HESCs), and assessed HOXA10 regulation of FKBP4. Expression ofFKBP4mRNA was increased in the late proliferative phase and remained elevated throughout the secretory phase.FKBP5expression was low and remained constant throughout the menstrual cycle. Compared with controls,FKBP4mRNA expression was decreased in the endometrium of women with endometriosis, whereas no significant endometriosis-related change was seen forFKBP5. Cultured HESCs were treated with eitherFKBP4orFKBP5siRNA and then decidualized by incubation with progesterone (P4) and 8-bromoadenosine cAMP. Treatment of HESCs withFKBP4siRNA resulted in 60% lowerIGFBP1expression. In contrast, incubation withFKBP5siRNA did not significantly decreaseIGFBP1expression duringin vitrodecidualization.HOXA10andFKBP4expression increased in parallel duringin vitrodecidualization. In HESCs, overexpressed HOXA10 enhanced FKBP4 mRNA and protein levels, whereas HOXA10 knockdown decreased FKBP4 mRNA and protein levels compared with controls. Similarly, duringin vitrodecidualization,FKBP4expression was decreased in HOXA10-silenced cells. EnhancedHOXA10expression in HESCs elicits a decidualization mediating increase inFKBP4expression. The findings are consistent with the observation that women with endometriosis have diminishedFKBP4expression leading to impaired decidualization and infertility. The P4resistance seen in endometriosis may be mediated through HOXA10-regulatedFKBP4expression.


2001 ◽  
Vol 86 (12) ◽  
pp. 5964-5972
Author(s):  
Antonis Makrigiannakis ◽  
George Coukos ◽  
Anastasia Mantani ◽  
Prokopis Prokopakis ◽  
Geoffrey Trew ◽  
...  

The Wilms’ tumor suppressor gene (WT1) encodes a zinc-finger containing transcription factor that is selectively expressed in the developing urogenital tract and functions as a tissue-specific developmental regulator. In addition to its gene-regulatory function through DNA binding properties, WT-1 also regulates transcription by formation of protein-protein complexes. These properties place WT-1 as a major regulator of cell growth and differentiation. In view of these observations, we studied WT1 mRNA and protein in human endometrial extracts and in endometrial stromal cells (ESCs) differentiating into decidual cells in vitro, by RT-PCR and Western blotting, respectively. WT1 protein expression was also studied in situ in the proliferative and the secretory phase of the menstrual cycle in the early pregnant state. Analysis by PCR of total RNA prepared from human ESCs demonstrated the presence of WT1 mRNA and four WT1 mRNA splice variants. Western blot analysis of nuclear protein extracts from ESCs yielded one immunoreactive protein of the expected size (approximately 52–54 kDa) recognized by the WT1 antibody. Immunohistochemical staining showed that WT1 protein is localized only to nuclei of human endometrial stromal cells. It remains constant in the proliferative and the secretory phase of the menstrual cycle and is increased remarkably during decidualization in early pregnancy. ESCs decidualized in vitro were investigated for WT-1 expression, which confirmed that decidualizing stimuli (E2, medroxy-progesterone-acetate, and relaxin for 12 d or cAMP and progesterone for 1–4 d) induced WT-1 mRNA (P &lt; 0.05) and increased protein levels (P &lt; 0.05). These data indicate that in humans the WT1 gene is expressed in ESCs and its mRNA and protein levels remain constant in the proliferative and the secretory phase of the menstrual cycle and that WT1 mRNA and protein expression increases significantly in ESCs when these cells differentiate into decidual cells.


Reproduction ◽  
2020 ◽  
Vol 159 (3) ◽  
pp. 289-302 ◽  
Author(s):  
H El-Sheikh Ali ◽  
E L Legacki ◽  
K E Scoggin ◽  
S C Loux ◽  
P Dini ◽  
...  

Equine placentitis is associated with alterations in maternal peripheral steroid concentrations, which could negatively affect pregnancy outcome. This study aimed to elucidate the molecular mechanisms related to steroidogenesis and steroid-receptor signaling in the equine placenta during acute placentitis. Chorioallantois (CA) and endometrial (EN) samples were collected from mares with experimentally induced placentitis (n = 4) and un-inoculated gestationally age-matched mares (control group; n = 4). The mRNA expression of genes coding for steroidogenic enzymes (3βHSD, CYP11A1, CYP17A1, CYP19A1, SRD5A1, and AKR1C23) was evaluated using qRT-PCR. The concentration of these enzyme-dependent steroids (P5, P4, 5αDHP, 3αDHP, 20αDHP, 3β-20αDHP, 17OH-P, DHEA, A4, and estrone) was assessed using liquid chromatography-tandem mass spectrometry in both maternal circulation and placental tissue. Both SRD5A1 and AKR1C23, which encode for the key progesterone metabolizing enzymes, were downregulated (P < 0.05) in CA from the placentitis group compared to controls, and this downregulation was associated with a decline in tissue concentrations of 5αDHP (P < 0.05), 3αDHP (P < 0.05), and 3β-20αDHP (P = 0.052). In the EN, AKR1C23 was also downregulated in the placentitis group compared to controls, and this downregulation was associated with a decline in EN concentrations of 3αDHP (P < 0.01) and 20αDHP (P < 0.05). Moreover, CA expression of CYP19A1 tended to be lower in the placentitis group, and this reduction was associated with lower (P = 0.057) concentrations of estrone in CA. Moreover, ESR1 (steroid receptors) gene expression was downregulated (P = 0.057) in CA from placentitis mares. In conclusion, acute equine placentitis is associated with a local withdrawal of progestins in the placenta and tended to be accompanied with estrogen withdrawals in CA.


Biomedicines ◽  
2020 ◽  
Vol 8 (12) ◽  
pp. 588
Author(s):  
Rafah Alnafakh ◽  
Fiona Choi ◽  
Alice Bradfield ◽  
Meera Adishesh ◽  
Gabriele Saretzki ◽  
...  

Telomeres protect chromosomal ends and they are maintained by the specialised enzyme, telomerase. Endometriosis is a common gynaecological disease and high telomerase activity and higher hTERT levels associated with longer endometrial telomere lengths are characteristics of eutopic secretory endometrial aberrations of women with endometriosis. Our ex-vivo study examined the levels of hTERC and DKC1 RNA and dyskerin protein levels in the endometrium from healthy women and those with endometriosis (n = 117). The in silico study examined endometriosis-specific telomere- and telomerase-associated gene (TTAG) transcriptional aberrations of secretory phase eutopic endometrium utilising publicly available microarray datasets. Eutopic secretory endometrial hTERC levels were significantly increased in women with endometriosis compared to healthy endometrium, yet dyskerin mRNA and protein levels were unperturbed. Our in silico study identified 10 TTAGs (CDKN2A, PML, ZNHIT2, UBE3A, MCCC2, HSPC159, FGFR2, PIK3C2A, RALGAPA1, and HNRNPA2B1) to be altered in mid-secretory endometrium of women with endometriosis. High levels of hTERC and the identified other TTAGs might be part of the established alteration in the eutopic endometrial telomerase biology in women with endometriosis in the secretory phase of the endometrium and our data informs future research to unravel the fundamental involvement of telomerase in the pathogenesis of endometriosis.


Author(s):  
Malavika K Adur ◽  
Andrea G Braundmeier-Fleming ◽  
Bruce A Lessey ◽  
Romana A Nowak

Problem: Perturbations in T-helper lymphocyte profiles have previously been associated with endometriosis related subfertility and conception failure. Hence a retrospective in vitro study was conducted to evaluate the relationship between T-regulatory (Treg) and T-helper 17 (Th17) lymphocytes in the eutopic endometrium of women with unexplained subfertility and correlate these profiles to their conception status. Method of study: Eutopic endometrial biopsies were collected during the mid-secretory phase of the menstrual cycle, from women with unexplained subfertility. These samples were evaluated immunohistochemically for Treg and Th17 lymphocytes as well as the related proinflammatory cytokine, Interleukin-17 (IL-17). These eutopic endometrial T lymphocyte subpopulations were compared to the patients’ conception status in subsequent cycles. Results: Though Treg cells were not indicative of conception success in subsequent cycles, patients who maintained their subfertile (no conception) status were observed to have a higher Th17 cell count in their eutopic endometrium. The ratio of Treg:Th17 cell counts was significantly correlated to patient conception status as well. These trends stayed consistent irrespective of concurrent endometriosis. Conclusion: Patients with a high proinflammatory Th17 lymphocyte profile and low Treg:Th17 ratio in their eutopic endometrium during the secretory phase of their menstrual cycle are more likely to not conceive in subsequent cycles.


2016 ◽  
Vol 2016 ◽  
pp. 1-11 ◽  
Author(s):  
Ruihua Zhong ◽  
Aying Ma ◽  
Jianping Zhu ◽  
Guoting Li ◽  
Shuwu Xie ◽  
...  

We evaluated the effectiveness of Kuntai Capsule (KTC) for treating endometriosis using rat model and investigated its preliminary mechanism of action involved. SD rats were implanted with endometrial tissues and treated with KTC for three weeks. Then, laparotomy was performed to examine volume changes of the autografts. The serum levels of TNF-α, IL-6, COX-2, E2, and P4 were measured through ELISA. TUNEL was performed to analyze the apoptosis on ectopic endometrium. Protein levels of caspases 8, 9, and 3 and cytochrome c in the ectopic and eutopic endometrium were measured by western blotting. Results showed that KTC significantly decreased the volumes of ectopic endometrium. The level of TNF-αincreased and E2decreased in the KTC treatment groups. TUNEL and western blot assay showed that KTC could induce apoptosis of endometriotic tissues, accompanied with the increased protein expression of caspases 8 and 9, activated caspase-3, and cytochrome c in a dose-dependent manner. However, these protein expression profiles were not affected in eutopic endometrium. Our findings suggest that KTC could inhibit the growth of ectopic endometrial tissue through upregulating the level of TNF-αand its downstream signaling, including caspases and cytochrome c.


2015 ◽  
Vol 2015 ◽  
pp. 1-10 ◽  
Author(s):  
P. Laudanski ◽  
R. Charkiewicz ◽  
A. Tolwinska ◽  
J. Szamatowicz ◽  
A. Charkiewicz ◽  
...  

It has been well documented that aberrant expression of selected microRNAs (miRNAs) might contribute to the pathogenesis of disease. The aim of the present study is to compare miRNA expression by the most comprehensive locked-nucleic acid (LNA) miRNA microarray in eutopic endometrium of patients with endometriosis and control. In the study we recruited 21 patients with endometriosis and 25 were disease-free women. The miRNA expression profiles were determined using the LNA miRNA microarray and validated for selected molecules by real-time PCR. We identified 1198 human miRNAs significantly differentially altered in endometriosis versus control samples using false discovery rate of <5%. However only 136 miRNAs showed differential regulation by fold change of at least 1.3. By the use of selected statistical analysis we obtained 45 potential pathways that might play a role in the pathogenesis of endometriosis. We also found that natural killer cell mediated cytotoxicity pathway was found to be inhibited which is consistent with previous studies. There are several pathways that may be potentially dysregulated, due to abnormal miRNA expression, in eutopic endometrium of patients with endometriosis and in this way contribute to its pathogenesis.


2009 ◽  
Vol 21 (9) ◽  
pp. 106
Author(s):  
E. M. C. Ohlsson Teague ◽  
V. Nisenblat ◽  
S. A. Robertson ◽  
M. L. Hull

microRNAs are short, single-stranded RNAs that regulate gene expression at the post-transcriptional level. Plasma and serum microRNAs correlate closely with microRNA profiles of diseased tissue and have been explored as blood-based biomarkers for human diseases, including steroid-driven malignancies. However, reproductive steroid signalling regulates the expression of specific microRNAs and this could impact the utility of microRNA biomarkers in reproductive aged women. We hypothesised that microRNA expression profiles are altered by steroid hormone fluctuations associated with the menstrual cycle. To test this hypothesis, plasma microRNA expression was measured in healthy women at 3 stages of a 28 day menstrual cycle; ie menstrual (day 3-5), follicular (day 9–13) and implantation window/secretory phase (day 18–22). Total RNA was extracted from plasma, multiplex reverse transcription was performed, and the cDNA pre-amplified prior to expression analysis of 667 microRNAs on Taqman low density PCR arrays (n=6 women). Preliminary data shows that up to 200 microRNAs may be detected with this methodology, and that at least 14 of these are differentially expressed (fold change ≥±1.5) at follicular and secretory phase, as compared to menstrual phase. We plan to confirm these findings with standard Taqman microRNA assays (n=10 women). Our findings suggest that plasma miRNA expression profiles change over the menstrual cycle, and that this could confound microRNA-based diagnostic tests. We hope to demonstrate the most appropriate cycle phase for blood-based miRNA profiling, facilitating the development of plasma microRNA-based diagnostic tests and providing valuable information to researchers studying circulating microRNA profiles in reproductive aged women.


1984 ◽  
Vol 101 (2) ◽  
pp. 181-188 ◽  
Author(s):  
R. C. Bonney ◽  
M. J. Scanlon ◽  
D. L. Jones ◽  
M. J. Reed ◽  
V. H. T. James

ABSTRACT Concentrations of 5-androstene-3β, 17β-diol (androstenediol), dehydroepiandrosterone (DHA) and DHA sulphate (DHAS) were measured in endometrium and plasma from normal premenopausal and perimenopausal women (average ages 37 and 48 years respectively) at different stages of the menstrual cycle. Plasma levels did not vary with the stage of the cycle for any of the three steroids. Mean plasma levels of androstenediol ranged between 2·03 and 2·92 nmol/l for premenopausal women and 1·38 and 1·58 nmol/l for perimenopausal women while mean concentrations of DHA were 20·80–36·41 nmol/l (premenopausal women) and 13·87–19·07 nmol/l (perimenopausal women). The values for DHAS were more variable and ranged between 3·20 and 4·56 and 2·94 and 4·25 μmol/l for pre- and perimenopausal women respectively. In premenopausal women endometrial tissue concentrations of androstenediol and DHA increased three to fourfold in the secretory phase while no increase was observed in DHAS. There was a similar increase in androstenediol but not DHA or DHAS during the secretory phase for perimenopausal women. A significant positive correlation was found for tissue androstenediol and DHA in both groups of women but the relationship between DHAS and the other androgens was significant only for perimenopausal women. We suggest that the increase in androstenediol and DHA concentrations could be due to an increase in a receptor or binding protein, possibly progesterone dependent, present in secretory phase endometrium. J. Endocr. (1984) 101, 181–188


Sign in / Sign up

Export Citation Format

Share Document