scholarly journals GREM1 is associated with metastasis and predicts poor prognosis in ER-negative breast cancer patients

2019 ◽  
Vol 17 (1) ◽  
Author(s):  
Ulrike Neckmann ◽  
Camilla Wolowczyk ◽  
Martina Hall ◽  
Eivind Almaas ◽  
Jiang Ren ◽  
...  

Abstract Background In breast cancer, activation of bone morphogenetic protein (BMP) signaling and elevated levels of BMP-antagonists have been linked to tumor progression and metastasis. However, the simultaneous upregulation of BMPs and their antagonist, and the fact that both promote tumor aggressiveness seems contradictory and is not fully understood. Methods We analyzed the transcriptomes of the metastatic 66cl4 and the non-metastatic 67NR cell lines of the 4T1 mouse mammary tumor model to search for factors that promote metastasis. CRISPR/Cas9 gene editing was used for mechanistic studies in the same cell lines. Furthermore, we analyzed gene expression patterns in human breast cancer biopsies obtained from public datasets to evaluate co-expression and possible relations to clinical outcome. Results We found that mRNA levels of the BMP-antagonist Grem1, encoding gremlin1, and the ligand Bmp4 were both significantly upregulated in cells and primary tumors of 66cl4 compared to 67NR. Depletion of gremlin1 in 66cl4 could impair metastasis to the lungs in this model. Furthermore, we found that expression of Grem1 correlated with upregulation of several stem cell markers in 66cl4 cells compared to 67NR cells. Both in the mouse model and in patients, expression of GREM1 associated with extracellular matrix organization, and formation, biosynthesis and modification of collagen. Importantly, high expression of GREM1 predicted poor prognosis in estrogen receptor negative breast cancer patients. Analyses of large patient cohorts revealed that amplification of genes encoding BMP-antagonists and elevation of the corresponding transcripts is evident in biopsies from more than half of the patients and much more frequent for the secreted BMP-antagonists than the intracellular inhibitors of SMAD signaling. Conclusion In conclusion, our results show that GREM1 is associated with metastasis and predicts poor prognosis in ER-negative breast cancer patients. Gremlin1 could represent a novel target for therapy.

2021 ◽  
Vol 11 ◽  
Author(s):  
Xin Hua ◽  
Zhi-Qing Long ◽  
Ling Guo ◽  
Wen Wen ◽  
Xin Huang ◽  
...  

Background: IQ motif-containing GTPase activating protein 3 (IQGAP3), the latest identified member of the IQGAP family, may act as a crucial factor in cancer development and progression; however, its clinical value in breast cancer remains unestablished. We explored the correlation between IQGAP3 expression profile and the clinicopathological features in breast cancer.Methods: IQGAP3 mRNA and protein levels were detected in breast cancer cell lines and tumor tissues by real-time PCR and western blotting and compared to the normal control groups. Protein expression of IQGAP3 was also evaluated immunohistochemically in archived paraffin-embedded specimens from 257 breast cancer patients, and the associations between IQGAP3 expression level, clinical characteristics, and prognosis were analyzed. We assessed the relationship between IQGAP3 expression and sensitivity to radiation therapy which was determined by subgroup analysis.Results: IQGAP3 was significantly upregulated in breast cancer cell lines and human tumor tissues at both the mRNA and protein level compared to controls. Additionally, high levels of IQGAP3 expression were detected in 110/257 (42.8%) of archived paraffin-embedded breast cancer specimens. High IQGAP3 expression level was significantly related to clinical stage (p = 0.001), T category (p = 0.002), N category (p = 0.001), locoregional recurrence (p = 0.002), distant metastasis (p = 0.001), and vital status (p = 0.001). Univariate and multivariate statistical analysis showed that IQGAP3 expression was an independent prognostic factor among all 257 breast cancer patients in our cohort (p = 0.003, p = 0.001). Subgroup analysis revealed IQGAP3 expression correlated with radioresistance and was also an independent predictor of radiotherapy outcome.Conclusion: Our findings suggest that high IQGAP3 expression predicts poor prognosis and radioresistance in breast cancer. Therefore, IQGAP3 may be a reliable prognostic biomarker in breast cancer and could be used to identify patients who may benefit from radiotherapy.


2017 ◽  
Vol 29 ◽  
pp. 62-67 ◽  
Author(s):  
Jaudah Al-Maghrabi ◽  
Kaltoom Al-Sakkaf ◽  
Imtiaz Ahmad Qureshi ◽  
Nadeem Shafique Butt ◽  
Lila Damnhory ◽  
...  

2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Sanne Løkkegaard ◽  
Daniel Elias ◽  
Carla L. Alves ◽  
Martin V. Bennetzen ◽  
Anne-Vibeke Lænkholm ◽  
...  

AbstractResistance to endocrine therapy in estrogen receptor-positive (ER+) breast cancer is a major clinical problem with poorly understood mechanisms. There is an unmet need for prognostic and predictive biomarkers to allow appropriate therapeutic targeting. We evaluated the mechanism by which minichromosome maintenance protein 3 (MCM3) influences endocrine resistance and its predictive/prognostic potential in ER+ breast cancer. We discovered that ER+ breast cancer cells survive tamoxifen and letrozole treatments through upregulation of minichromosome maintenance proteins (MCMs), including MCM3, which are key molecules in the cell cycle and DNA replication. Lowering MCM3 expression in endocrine-resistant cells restored drug sensitivity and altered phosphorylation of cell cycle regulators, including p53(Ser315,33), CHK1(Ser317), and cdc25b(Ser323), suggesting that the interaction of MCM3 with cell cycle proteins is an important mechanism of overcoming replicative stress and anti-proliferative effects of endocrine treatments. Interestingly, the MCM3 levels did not affect the efficacy of growth inhibitory by CDK4/6 inhibitors. Evaluation of MCM3 levels in primary tumors from four independent cohorts of breast cancer patients receiving adjuvant tamoxifen mono-therapy or no adjuvant treatment, including the Stockholm tamoxifen (STO-3) trial, showed MCM3 to be an independent prognostic marker adding information beyond Ki67. In addition, MCM3 was shown to be a predictive marker of response to endocrine treatment. Our study reveals a coordinated signaling network centered around MCM3 that limits response to endocrine therapy in ER+ breast cancer and identifies MCM3 as a clinically useful prognostic and predictive biomarker that allows personalized treatment of ER+ breast cancer patients.


2021 ◽  
pp. 1-10
Author(s):  
Yu Wang ◽  
Han Zhao ◽  
Ping Zhao ◽  
Xingang Wang

BACKGROUND: Pyruvate kinase M2 (PKM2) was overexpressed in many cancers, and high PKM2 expression was related with poor prognosis and chemoresistance. OBJECTIVE: We investigated the expression of PKM2 in breast cancer and analyzed the relation of PKM2 expression with chemotherapy resistance to the neoadjuvant chemotherapy (NAC). We also investigated whether PKM2 could reverse chemoresistance in breast cancer cells in vitro and in vivo. METHODS: Immunohistochemistry (IHC) was performed in 130 surgical resected breast cancer tissues. 78 core needle biopsies were collected from breast cancer patients before neoadjuvant chemotherapy. The relation of PKM2 expression and multi-drug resistance to NAC was compared. The effect of PKM2 silencing or overexpression on Doxorubicin (DOX) sensitivity in the MCF-7 cells in vitro and in vivo was compared. RESULTS: PKM2 was intensively expressed in breast cancer tissues compared to adjacent normal tissues. In addition, high expression of PKM2 was associated with poor prognosis in breast cancer patients. The NAC patients with high PKM2 expression had short survival. PKM2 was an independent prognostic predictor for surgical resected breast cancer and NAC patients. High PKM2 expression was correlated with neoadjuvant treatment resistance. High PKM2 expression significantly distinguished chemoresistant patients from chemosensitive patients. In vitro and in vivo knockdown of PKM2 expression decreases the resistance to DOX in breast cancer cells in vitro and tumors in vivo. CONCLUSION: PKM2 expression was associated with chemoresistance of breast cancers, and could be used to predict the chemosensitivity. Furthermore, targeting PKM2 could reverse chemoresistance, which provides an effective treatment methods for patients with breast cancer.


2021 ◽  
Vol 22 (10) ◽  
pp. 5382
Author(s):  
Pei-Yi Chu ◽  
Hsing-Ju Wu ◽  
Shin-Mae Wang ◽  
Po-Ming Chen ◽  
Feng-Yao Tang ◽  
...  

(1) Background: methionine cycle is not only essential for cancer cell proliferation but is also critical for metabolic reprogramming, a cancer hallmark. Hepatic and extrahepatic tissues methionine adenosyltransferases (MATs) are products of two genes, MAT1A and MAT2A that catalyze the formation of S-adenosylmethionine (SAM), the principal biological methyl donor. Glycine N-methyltransferase (GNMT) further utilizes SAM for sarcosine formation, thus it regulates the ratio of SAM:S-adenosylhomocysteine (SAH). (2) Methods: by analyzing the TCGA/GTEx datasets available within GEPIA2, we discovered that breast cancer patients with higher MAT2A had worse survival rate (p = 0.0057). Protein expression pattern of MAT1AA, MAT2A and GNMT were investigated in the tissue microarray in our own cohort (n = 252) by immunohistochemistry. MAT2A C/N expression ratio and cell invasion activity were further investigated in a panel of breast cancer cell lines. (3) Results: GNMT and MAT1A were detected in the cytoplasm, whereas MAT2A showed both cytoplasmic and nuclear immunoreactivity. Neither GNMT nor MAT1A protein expression was associated with patient survival rate in our cohort. Kaplan–Meier survival curves showed that a higher cytoplasmic/nuclear (C/N) MAT2A protein expression ratio correlated with poor overall survival (5 year survival rate: 93.7% vs. 83.3%, C/N ratio ≥ 1.0 vs. C/N ratio < 1.0, log-rank p = 0.004). Accordingly, a MAT2A C/N expression ratio ≥ 1.0 was determined as an independent risk factor by Cox regression analysis (hazard ratio = 2.771, p = 0.018, n = 252). In vitro studies found that breast cancer cell lines with a higher MAT2A C/N ratio were more invasive. (4) Conclusions: the subcellular localization of MAT2A may affect its functions, and elevated MAT2A C/N ratio in breast cancer cells is associated with increased invasiveness. MAT2A C/N expression ratio determined by IHC staining could serve as a novel independent prognostic marker for breast cancer.


Cancers ◽  
2020 ◽  
Vol 13 (1) ◽  
pp. 2
Author(s):  
Lee D. Gibbs ◽  
Kelsey Mansheim ◽  
Sayantan Maji ◽  
Rajesh Nandy ◽  
Cheryl M. Lewis ◽  
...  

Increasing evidence suggests that AnxA2 contributes to invasion and metastasis of breast cancer. However, the clinical significance of AnxA2 expression in breast cancer has not been reported. The expression of AnxA2 in cell lines, tumor tissues, and serum samples of breast cancer patients were analyzed by immunoblotting, immunohistochemistry, and enzyme-linked immunosorbent assay, respectively. We found that AnxA2 was significantly upregulated in tumor tissues and serum samples of breast cancer patients compared with normal controls. The high expression of serum AnxA2 was significantly associated with tumor grades and poor survival of the breast cancer patients. Based on molecular subtypes, AnxA2 expression was significantly elevated in tumor tissues and serum samples of triple-negative breast cancer (TNBC) patients compared with other breast cancer subtypes. Our analyses on breast cancer cell lines demonstrated that secretion of AnxA2 is associated with its tyrosine 23 (Tyr23) phosphorylation in cells. The expression of non-phosphomimetic mutant of AnxA2 in HCC1395 cells inhibits its secretion from cells compared to wild-type AnxA2, which further suggest that Tyr23 phosphorylation is a critical step for AnxA2 secretion from TNBC cells. Our analysis of AnxA2 phosphorylation in clinical samples further confirmed that the phosphorylation of AnxA2 at Tyr23 was high in tumor tissues of TNBC patients compared to matched adjacent non-tumorigenic breast tissues. Furthermore, we observed that the diagnostic value of serum AnxA2 was significantly high in TNBC compared with other breast cancer subtypes. These findings suggest that serum AnxA2 concentration could be a potential diagnostic biomarker for TNBC patients.


Genes ◽  
2021 ◽  
Vol 12 (7) ◽  
pp. 996
Author(s):  
Ana Carolina Pavanelli ◽  
Flavia Rotea Mangone ◽  
Luciana R. C. Barros ◽  
Juliana Machado-Rugolo ◽  
Vera L. Capelozzi ◽  
...  

Abnormal long non-coding RNAs (lncRNAs) expression has been documented to have oncogene or tumor suppressor functions in the development and progression of cancer, emerging as promising independent biomarkers for molecular cancer stratification and patients’ prognosis. Examining the relationship between lncRNAs and the survival rates in malignancies creates new scenarios for precision medicine and targeted therapy. Breast cancer (BRCA) is a heterogeneous malignancy. Despite advances in its molecular classification, there are still gaps to explain in its multifaceted presentations and a substantial lack of biomarkers that can better predict patients’ prognosis in response to different therapeutic strategies. Here, we performed a re-analysis of gene expression data generated using cDNA microarrays in a previous study of our group, aiming to identify differentially expressed lncRNAs (DELncRNAs) with a potential predictive value for response to treatment with taxanes in breast cancer patients. Results revealed 157 DELncRNAs (90 up- and 67 down-regulated). We validated these new biomarkers as having prognostic and predictive value for breast cancer using in silico analysis in public databases. Data from TCGA showed that compared to normal tissue, MIAT was up-regulated, while KCNQ1OT1, LOC100270804, and FLJ10038 were down-regulated in breast tumor tissues. KCNQ1OT1, LOC100270804, and FLJ10038 median levels were found to be significantly higher in the luminal subtype. The ROC plotter platform results showed that reduced expression of these three DElncRNAs was associated with breast cancer patients who did not respond to taxane treatment. Kaplan–Meier survival analysis revealed that a lower expression of the selected lncRNAs was significantly associated with worse relapse-free survival (RFS) in breast cancer patients. Further validation of the expression of these DELncRNAs might be helpful to better tailor breast cancer prognosis and treatment.


2005 ◽  
Vol 12 (3) ◽  
pp. 599-614 ◽  
Author(s):  
T Frogne ◽  
J S Jepsen ◽  
S S Larsen ◽  
C K Fog ◽  
B L Brockdorff ◽  
...  

Development of acquired resistance to antiestrogens is a major clinical problem in endocrine treatment of breast cancer patients. The IGF system plays a profound role in many cancer types, including breast cancer. Thus, overexpression and/or constitutive activation of the IGF-I receptor (IGF-IR) or different components of the IGF-IR signaling pathway have been reported to render breast cancer cells less estrogen dependent and capable of sustaining cell proliferation in the presence of antiestrogens. In this study, growth of the antiestrogen-sensitive human breast cancer cell line MCF-7 was inhibited by treatment with IGF-IR-neutralizing antibodies. In contrast, IGF-IR-neutralizing antibodies had no effect on growth of two different antiestrogen-resistant MCF-7 sublines. A panel of antiestrogen-resistant cell lines was investigated for expression of IGF-IR and either undetectable or severely reduced IGF-IR levels were observed. No increase in insulin receptor substrate 1 (IRS-1) or total PKB/Akt (Akt) was detected in the resistant cell lines. However, a significant increase in phosphorylated Akt (pAkt) was found in four of six antiestrogen-resistant cell lines. Overexpression of pAkt was associated with increased Akt kinase activity in both a tamoxifen- and an ICI 182,780-resistant cell line. Inhibition of Akt phosphorylation by the phosphatidylinositol 3-kinase (PI3-K) inhibitor wortmannin or the Akt inhibitor SH-6 (structurally modified phosphatidyl inositol ether liquid analog PIA 6) resulted in a more pronounced growth inhibitory effect on the antiestrogen-resistant cells compared with the parental cells, suggesting that signaling via Akt is required for antiestrogen-resistant cell growth in at least a subset of our antiestrogen-resistant cell lines. PTEN expression and activity was not decreased in cell lines overexpressing pAkt. Our data demonstrate that Akt is a target for treatment of antiestrogen-resistant breast cancer cell lines and we suggest that antiestrogen-resistant breast cancer patients may benefit from treatment targeted to inhibit Akt signaling.


Sign in / Sign up

Export Citation Format

Share Document