scholarly journals PD−L1 immunostaining: what pathologists need to know

2021 ◽  
Vol 16 (1) ◽  
Author(s):  
Mohammed Akhtar ◽  
Sameera Rashid ◽  
Issam A. Al-Bozom

Abstract Background Immune checkpoint proteins, especially PD-L1 and PD-1, play a crucial role in controlling the intensity and duration of the immune response, thus preventing the development of autoimmunity. These proteins play a vital role in enabling cancer cells to escape immunity, proliferate and progress. Methods This brief review highlights essential points related to testing for immune checkpoint therapy that histopathologists need to know. Results In recent years, several inhibitors of these proteins have been used to reactivate the immune system to fight cancer. Selection of patients for such therapy requires demonstration of PD-L1 activation on the tumor cells, best done by immunohistochemical staining of the tumor and immune cells using various antibodies with predetermined thresholds. Conclusions Immune checkpoint therapy appears to be promising and is rapidly expanding to include a large variety of cancers.

2020 ◽  
Vol 19 (4) ◽  
pp. 123-131
Author(s):  
G. A. Janus ◽  
A. G. Ievleva ◽  
E. N. Suspitsyn ◽  
V. I. Tyurin ◽  
I. V. Bizin ◽  
...  

Despite the unprecedented success in using immune checkpoint inhibitors in the treatment of lung cancer, melanoma, hypermutable tumors of various localization, etc., a significant proportion of patients receiving these drugs do not respond to treatment. Predictive markers routinely used in the selection of patients for immunotherapy, in particular, the level of expression of PD -L1 and the presence of microsatellite instability, have certain limitations. Over the past decade, many other biomarkers designed to predict response to immunotherapy have been proposed, namely: tymor mutation burden, composition of lymphocytic infiltrate; allelic composition of the major histocompatibility complex; relationship between the numbers of different formed elements of blood as well as between its biochemical parameters; microflora of the digestive tract, etc. These markers can directly or indirectly reflect the immunogenicity of the tumor itself, as well as the state of systemic and intratumoral immune response. The predictive power and reliability of these markers are extremely different. When preparing this review, we conducted a literature search for recent studies regarding predictors of efficacy for immune checkpoint inhibitors published in the journals included in the databases, such as Pubmed, Web of Science, and Scopus.


Cancers ◽  
2021 ◽  
Vol 13 (8) ◽  
pp. 1750
Author(s):  
Rafał Pęksa ◽  
Michał Kunc ◽  
Marta Popęda ◽  
Michał Piątek ◽  
Michał Bieńkowski ◽  
...  

In the current study, we aimed to investigate whether expression of immune checkpoint proteins (V-domain Ig suppressor of T cell activation (VISTA) and programmed death-ligand 1 (PD-L1)) and markers of systemic inflammation could predict progression/relapse and death in the cohort of 180 patients with testicular germ-cell tumors (GCTs). Expression of PD-L1 and VISTA was assessed by immunohistochemistry utilizing tissue microarrays. To estimate systemic inflammation neutrophil-to-lymphocyte ratio (NLR), lymphocyte-to-monocyte ratio (LMR), and platelet-to-lymphocyte ratio (PLR) were calculated. We found high PD-L1 and VISTA expression on tumor-associated immune cells (TAICs) in 89 (49.44%) and 63 (37.22%) of GCTs, respectively, whereas tumor cells besides trophoblastic elements were almost uniformly negative. High PD-L1 was associated with seminomatous histology and lower stage. Relapses in stage I patients occurred predominantly in cases with low numbers of PD-L1 and VISTA-expressing TAICs. In stage II/III disease, the combination of low VISTA-expressing TAICs and high PLR was identified as predictor of shorter event-free survival (HR 4.10; 1.48–11.36, p = 0.006) and overall survival (HR 15.56, 95% CI 1.78–135.51, p = 0.001) independently of tumor histology and location of metastases. We demonstrated that the assessment of immune checkpoint proteins on TAICs may serve as a valuable prognostic factor in patients with high-risk testicular GCTs. Further study is warranted to explore the predictive utility of these biomarkers in GCTs.


2021 ◽  
Vol 18 (1) ◽  
Author(s):  
Tian-Yu Lei ◽  
Ying-Ze Ye ◽  
Xi-Qun Zhu ◽  
Daniel Smerin ◽  
Li-Juan Gu ◽  
...  

AbstractThrough considerable effort in research and clinical studies, the immune system has been identified as a participant in the onset and progression of brain injury after ischaemic stroke. Due to the involvement of all types of immune cells, the roles of the immune system in stroke pathology and associated effects are complicated. Past research concentrated on the functions of monocytes and neutrophils in the pathogenesis of ischaemic stroke and tried to demonstrate the mechanisms of tissue injury and protection involving these immune cells. Within the past several years, an increasing number of studies have elucidated the vital functions of T cells in the innate and adaptive immune responses in both the acute and chronic phases of ischaemic stroke. Recently, the phenotypes of T cells with proinflammatory or anti-inflammatory function have been demonstrated in detail. T cells with distinctive phenotypes can also influence cerebral inflammation through various pathways, such as regulating the immune response, interacting with brain-resident immune cells and modulating neurogenesis and angiogenesis during different phases following stroke. In view of the limited treatment options available following stroke other than tissue plasminogen activator therapy, understanding the function of immune responses, especially T cell responses, in the post-stroke recovery period can provide a new therapeutic direction. Here, we discuss the different functions and temporal evolution of T cells with different phenotypes during the acute and chronic phases of ischaemic stroke. We suggest that modulating the balance between the proinflammatory and anti-inflammatory functions of T cells with distinct phenotypes may become a potential therapeutic approach that reduces the mortality and improves the functional outcomes and prognosis of patients suffering from ischaemic stroke.


2020 ◽  
Vol 8 (Suppl 3) ◽  
pp. A223-A223
Author(s):  
Jennifer Whang ◽  
Andrea Fan ◽  
Christopher Kirk ◽  
Eric Lowe ◽  
Dustin McMinn ◽  
...  

BackgroundMany tumor cells escape immune cell clearance by overexpressing CD47, a multi-pass transmembrane protein, which binds signal regulatory protein α (SIRPα) on macrophages leading to decreased phagocytic activity. Blockade of CD47/SIRPα interactions enhances macrophage phagocytosis and is being targeted with antibody-based drugs, some of which are used in combination therapies in clinical trials. A novel method to target CD47 is through the inhibition of cotranslational translocation of transmembrane proteins. Immediately after exiting the ribosome, signal sequences that are unique to each protein are directed through the Sec61 channel into the ER for extracellular expression.1 Several Sec61-targeting compounds have been identified to suppress translocation in a signal sequence-specific manner.2 We previously described Sec61 inhibitors capable of selectively targeting immune checkpoint proteins and enhancing T cell function.3 Here, we demonstrate the blockade of CD47 expression on tumor cells and enhancement of macrophage phagocytosis with small molecule inhibitors of Sec61.MethodsSec61-dependent expression of target proteins was assayed using HEK293 cells overexpressing constructs comprised of signal sequences fused to a luciferase reporter. Stimulated PBMCs or tumor cells were incubated with Sec61 inhibitors, and surface expression of checkpoint molecules were examined by flow cytometry. Necrotic and apoptotic cells were assessed by Annexin V and 7AAD labeling. Human CD14+ monocytes were differentiated to M1- or M2-type macrophages. Jurkat or SKBR3 cells were incubated with Sec61 inhibitors, labeled with a pH sensitive dye and co-cultured with macrophages to assess phagocytosis.ResultsWe identified Sec61 inhibitors that block select immune checkpoint proteins. Compounds demonstrated either selective or multi-target profiles in transient transfection screens, which was supported by decreased protein expression on activated T cells. KZR-9275 targeted multiple checkpoint molecules, including PD-1, LAG-3 and CD73, along with a potent inhibition of the CD47 signal sequence reporter. CD47 surface expression was decreased on Jurkat and SKBR3 cells following 72 hours of compound treatment. KZR-9275 treatment of SKBR3 cells induced a minor increase in apoptotic cells, which was not detected in Jurkat cells. Increased macrophage phagocytosis, especially with M2-type macrophages, was observed when Jurkat or SKBR3 cells were pre-treated with KZR-9275.ConclusionsOur findings demonstrate that Sec61 inhibitors can block the expression of CD47, a phagocytosis checkpoint protein, on tumor cells and subsequently modulate macrophage phagocytic activity. Small molecule inhibitors of Sec61 provide an opportunity to target multiple checkpoint proteins on various cell populations. Future in vivo tumor models will assess the efficacy of Sec61 inhibitors to provide combination-like therapy.ReferencesPark E, Rapoport TA. Mechanisms of Sec61/SecY-mediated protein translocation across membranes. Annu Rev Biophys 2012; 41:1–20.Van Puyenbroeck V, Vermeire K. Inhibitors of protein translocation across membranes of the secretory pathway: novel antimicrobial and anticancer agents. Cell Mol Life Sci 2018; 75:1541–1558.Whang J, Anderl J, Fan A, Kirk C, Lowe E, McMinn D, et al. Targeting multiple immune checkpoint proteins with novel small molecule inhibitors of Sec61-dependent cotranslational translocation. 34th Annual Meeting & Pre-Conference Programs of the Society for Immunotherapy of Cancer (SITC 2019): part 2. J Immunother Cancer 2019; 7: 283. Abstract 815.


2018 ◽  
Vol 1 (1) ◽  
pp. 19-24
Author(s):  
M. O. Katrichenko ◽  
I. I. Lisnyi

In the reviewed article, we consider epidemiological and laboratory data that confirm the protective effects of biologically active nutrients in our diet for various diseases. Along with various factors such as alcohol, smoking, nutrition plays a vital role in influencing the patient’s immune response by transforming cells or by preventing, or acceleration of malignancy. Many data suggest that immunoactive nutrients control inflammatory and precancerous reactions in immune cells. Immunoprophylaxis is usually associated with modulation of the immune response when inflamed, thereby improving clinical outcomes. Different nutrients, including glutamine, arginine, vitamins, minerals and long-chain fatty acids, are important components of immunological nutrition. Clinical studies associated with these substances show different results with minimal effect. However, some studies have shown that these nutrients may have immunomodulatory effects that can reduce the risk of developing cancer. Pre-clinical studies claim that most of these nutrients have a positive effect in the complex treatment of cancer patients. In this article, we will consider the effect of the above nutrients on the immune system in patients of oncologic profile. Recent evidences suggest that immunological nutrition plays an important role in the development of cancer and its progression. Data from animal studies have clearly shown that the use of immunomodulatory nutrients isolated from food, by launching a cascade of immunological reactions, can detect and eliminate the tumor. Although the technology has evolved to such an extent that we can study each individual cytokine or function of the immune cell, it is difficult to demonstrate the powerful role of the immune system in preventing or treating cancer due to the complexity of the tumor cell or heterogeneity in different patients' populations. However, the study sheds light on interactions in immune responses and cancer development, prevention and therapeutic strategies that involve modulation through biologically active agents.


2020 ◽  
Vol 5 (43) ◽  
pp. eaaz3867 ◽  
Author(s):  
Immihan Ceren Yasa ◽  
Hakan Ceylan ◽  
Ugur Bozuyuk ◽  
Anna-Maria Wild ◽  
Metin Sitti

The structural design parameters of a medical microrobot, such as the morphology and surface chemistry, should aim to minimize any physical interactions with the cells of the immune system. However, the same surface-borne design parameters are also critical for the locomotion performance of the microrobots. Understanding the interplay of such parameters targeting high locomotion performance and low immunogenicity at the same time is of paramount importance yet has so far been overlooked. Here, we investigated the interactions of magnetically steerable double-helical microswimmers with mouse macrophage cell lines and splenocytes, freshly harvested from mouse spleens, by systematically changing their helical morphology. We found that the macrophages and splenocytes can recognize and differentially elicit an immune response to helix turn numbers of the microswimmers that otherwise have the same size, bulk physical properties, and surface chemistries. Our findings suggest that the structural optimization of medical microrobots for the locomotion performance and interactions with the immune cells should be considered simultaneously because they are highly entangled and can demand a substantial design compromise from one another. Furthermore, we show that morphology-dependent interactions between macrophages and microswimmers can further present engineering opportunities for biohybrid microrobot designs. We demonstrate immunobots that can combine the steerable mobility of synthetic microswimmers and the immunoregulatory capability of macrophages for potential targeted immunotherapeutic applications.


2016 ◽  
Vol 18 (suppl 3) ◽  
pp. iii143.4-iii143
Author(s):  
Eric Ring ◽  
Blake Moore ◽  
Li Nan ◽  
Tina Etminan ◽  
James Markert ◽  
...  

2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Monica C. Gestal ◽  
Laura K. Howard ◽  
Kalyan Dewan ◽  
Hannah M. Johnson ◽  
Mariette Barbier ◽  
...  

AbstractWell-adapted pathogens must evade clearance by the host immune system and the study of how they do this has revealed myriad complex strategies and mechanisms. Classical bordetellae are very closely related subspecies that are known to modulate adaptive immunity in a variety of ways, permitting them to either persist for life or repeatedly infect the same host. Exploring the hypothesis that exposure to immune cells would cause bordetellae to induce expression of important immunomodulatory mechanisms, we identified a putative regulator of an immunomodulatory pathway. The deletion of btrS in B. bronchiseptica did not affect colonization or initial growth in the respiratory tract of mice, its natural host, but did increase activation of the inflammasome pathway, and recruitment of inflammatory cells. The mutant lacking btrS recruited many more B and T cells into the lungs, where they rapidly formed highly organized and distinctive Bronchial Associated Lymphoid Tissue (BALT) not induced by any wild type Bordetella species, and a much more rapid and strong antibody response than observed with any of these species. Immunity induced by the mutant was measurably more robust in all respiratory organs, providing completely sterilizing immunity that protected against challenge infections for many months. Moreover, the mutant induced sterilizing immunity against infection with other classical bordetellae, including B. pertussis and B. parapertussis, something the current vaccines do not provide. These findings reveal profound immunomodulation by bordetellae and demonstrate that by disrupting it much more robust protective immunity can be generated, providing a pathway to greatly improve vaccines and preventive treatments against these important pathogens.


Sign in / Sign up

Export Citation Format

Share Document