scholarly journals Machine learning driven non-invasive approach of water content estimation in living plant leaves using terahertz waves

Plant Methods ◽  
2019 ◽  
Vol 15 (1) ◽  
Author(s):  
Adnan Zahid ◽  
Hasan T. Abbas ◽  
Aifeng Ren ◽  
Ahmed Zoha ◽  
Hadi Heidari ◽  
...  

Abstract Background The demand for effective use of water resources has increased because of ongoing global climate transformations in the agriculture science sector. Cost-effective and timely distributions of the appropriate amount of water are vital not only to maintain a healthy status of plants leaves but to drive the productivity of the crops and achieve economic benefits. In this regard, employing a terahertz (THz) technology can be more reliable and progressive technique due to its distinctive features. This paper presents a novel, and non-invasive machine learning (ML) driven approach using terahertz waves with a swissto12 material characterization kit (MCK) in the frequency range of 0.75 to 1.1 THz in real-life digital agriculture interventions, aiming to develop a feasible and viable technique for the precise estimation of water content (WC) in plants leaves for 4 days. For this purpose, using measurements observations data, multi-domain features are extracted from frequency, time, time–frequency domains to incorporate three different machine learning algorithms such as support vector machine (SVM), K-nearest neighbour (KNN) and decision-tree (D-Tree). Results The results demonstrated SVM outperformed other classifiers using tenfold and leave-one-observations-out cross-validation for different days classification with an overall accuracy of 98.8%, 97.15%, and 96.82% for Coffee, pea shoot, and baby spinach leaves respectively. In addition, using SFS technique, coffee leaf showed a significant improvement of 15%, 11.9%, 6.5% in computational time for SVM, KNN and D-tree. For pea-shoot, 21.28%, 10.01%, and 8.53% of improvement was noticed in operating time for SVM, KNN and D-Tree classifiers, respectively. Lastly, baby spinach leaf exhibited a further improvement of 21.28% in SVM, 10.01% in KNN, and 8.53% in D-tree in overall operating time for classifiers. These improvements in classifiers produced significant advancements in classification accuracy, indicating a more precise quantification of WC in leaves. Conclusion Thus, the proposed method incorporating ML using terahertz waves can be beneficial for precise estimation of WC in leaves and can provide prolific recommendations and insights for growers to take proactive actions in relations to plants health monitoring.

Cancers ◽  
2020 ◽  
Vol 12 (11) ◽  
pp. 3406
Author(s):  
Elisabeth Bumes ◽  
Fro-Philip Wirtz ◽  
Claudia Fellner ◽  
Jirka Grosse ◽  
Dirk Hellwig ◽  
...  

Isocitrate dehydrogenase (IDH)-1 mutation is an important prognostic factor and a potential therapeutic target in glioma. Immunohistological and molecular diagnosis of IDH mutation status is invasive. To avoid tumor biopsy, dedicated spectroscopic techniques have been proposed to detect D-2-hydroxyglutarate (2-HG), the main metabolite of IDH, directly in vivo. However, these methods are technically challenging and not broadly available. Therefore, we explored the use of machine learning for the non-invasive, inexpensive and fast diagnosis of IDH status in standard 1H-magnetic resonance spectroscopy (1H-MRS). To this end, 30 of 34 consecutive patients with known or suspected glioma WHO grade II-IV were subjected to metabolic positron emission tomography (PET) imaging with O-(2-18F-fluoroethyl)-L-tyrosine (18F-FET) for optimized voxel placement in 1H-MRS. Routine 1H-magnetic resonance (1H-MR) spectra of tumor and contralateral healthy brain regions were acquired on a 3 Tesla magnetic resonance (3T-MR) scanner, prior to surgical tumor resection and molecular analysis of IDH status. Since 2-HG spectral signals were too overlapped for reliable discrimination of IDH mutated (IDHmut) and IDH wild-type (IDHwt) glioma, we used a nested cross-validation approach, whereby we trained a linear support vector machine (SVM) on the complete spectral information of the 1H-MRS data to predict IDH status. Using this approach, we predicted IDH status with an accuracy of 88.2%, a sensitivity of 95.5% (95% CI, 77.2–99.9%) and a specificity of 75.0% (95% CI, 42.9–94.5%), respectively. The area under the curve (AUC) amounted to 0.83. Subsequent ex vivo 1H-nuclear magnetic resonance (1H-NMR) measurements performed on metabolite extracts of resected tumor material (eight specimens) revealed myo-inositol (M-ins) and glycine (Gly) to be the major discriminators of IDH status. We conclude that our approach allows a reliable, non-invasive, fast and cost-effective prediction of IDH status in a standard clinical setting.


Sensors ◽  
2021 ◽  
Vol 21 (24) ◽  
pp. 8336
Author(s):  
Hafeez Ur Rehman Siddiqui ◽  
Hina Fatima Shahzad ◽  
Adil Ali Saleem ◽  
Abdul Baqi Khan Khan Khakwani ◽  
Furqan Rustam ◽  
...  

Emotion recognition gained increasingly prominent attraction from a multitude of fields recently due to their wide use in human-computer interaction interface, therapy, and advanced robotics, etc. Human speech, gestures, facial expressions, and physiological signals can be used to recognize different emotions. Despite the discriminating properties to recognize emotions, the first three methods have been regarded as ineffective as the probability of human’s voluntary and involuntary concealing the real emotions can not be ignored. Physiological signals, on the other hand, are capable of providing more objective, and reliable emotion recognition. Based on physiological signals, several methods have been introduced for emotion recognition, yet, predominantly such approaches are invasive involving the placement of on-body sensors. The efficacy and accuracy of these approaches are hindered by the sensor malfunctioning and erroneous data due to human limbs movement. This study presents a non-invasive approach where machine learning complements the impulse radio ultra-wideband (IR-UWB) signals for emotion recognition. First, the feasibility of using IR-UWB for emotion recognition is analyzed followed by determining the state of emotions into happiness, disgust, and fear. These emotions are triggered using carefully selected video clips to human subjects involving both males and females. The convincing evidence that different breathing patterns are linked with different emotions has been leveraged to discriminate between different emotions. Chest movement of thirty-five subjects is obtained using IR-UWB radar while watching the video clips in solitude. Extensive signal processing is applied to the obtained chest movement signals to estimate respiration rate per minute (RPM). The RPM estimated by the algorithm is validated by repeated measurements by a commercially available Pulse Oximeter. A dataset is maintained comprising gender, RPM, age, and associated emotions which are further used with several machine learning algorithms for automatic recognition of human emotions. Experiments reveal that IR-UWB possesses the potential to differentiate between different human emotions with a decent accuracy of 76% without placing any on-body sensors. Separate analysis for male and female participants reveals that males experience high arousal for happiness while females experience intense fear emotions. For disgust emotion, no large difference is found for male and female participants. To the best of the authors’ knowledge, this study presents the first non-invasive approach using the IR-UWB radar for emotion recognition.


Electronics ◽  
2021 ◽  
Vol 10 (16) ◽  
pp. 1955
Author(s):  
Ikram Sumaiya Thaseen ◽  
Vanitha Mohanraj ◽  
Sakthivel Ramachandran ◽  
Kishore Sanapala ◽  
Sang-Soo Yeo

In recent years, different variants of the botnet are targeting government, private organizations and there is a crucial need to develop a robust framework for securing the IoT (Internet of Things) network. In this paper, a Hadoop based framework is proposed to identify the malicious IoT traffic using a modified Tomek-link under-sampling integrated with automated Hyper-parameter tuning of machine learning classifiers. The novelty of this paper is to utilize a big data platform for benchmark IoT datasets to minimize computational time. The IoT benchmark datasets are loaded in the Hadoop Distributed File System (HDFS) environment. Three machine learning approaches namely naive Bayes (NB), K-nearest neighbor (KNN), and support vector machine (SVM) are used for categorizing IoT traffic. Artificial immune network optimization is deployed during cross-validation to obtain the best classifier parameters. Experimental analysis is performed on the Hadoop platform. The average accuracy of 99% and 90% is obtained for BoT_IoT and ToN_IoT datasets. The accuracy difference in ToN-IoT dataset is due to the huge number of data samples captured at the edge layer and fog layer. However, in BoT-IoT dataset only 5% of the training and test samples from the complete dataset are considered for experimental analysis as released by the dataset developers. The overall accuracy is improved by 19% in comparison with state-of-the-art techniques. The computational times for the huge datasets are reduced by 3–4 hours through Map Reduce in HDFS.


Drones ◽  
2020 ◽  
Vol 4 (3) ◽  
pp. 45
Author(s):  
Maria Angela Musci ◽  
Luigi Mazzara ◽  
Andrea Maria Lingua

Aircraft ground de-icing operations play a critical role in flight safety. However, to handle the aircraft de-icing, a considerable quantity of de-icing fluids is commonly employed. Moreover, some pre-flight inspections are carried out with engines running; thus, a large amount of fuel is wasted, and CO2 is emitted. This implies substantial economic and environmental impacts. In this context, the European project (reference call: MANUNET III 2018, project code: MNET18/ICT-3438) called SEI (Spectral Evidence of Ice) aims to provide innovative tools to identify the ice on aircraft and improve the efficiency of the de-icing process. The project includes the design of a low-cost UAV (uncrewed aerial vehicle) platform and the development of a quasi-real-time ice detection methodology to ensure a faster and semi-automatic activity with a reduction of applied operating time and de-icing fluids. The purpose of this work, developed within the activities of the project, is defining and testing the most suitable sensor using a radiometric approach and machine learning algorithms. The adopted methodology consists of classifying ice through spectral imagery collected by two different sensors: multispectral and hyperspectral camera. Since the UAV prototype is under construction, the experimental analysis was performed with a simulation dataset acquired on the ground. The comparison among the two approaches, and their related algorithms (random forest and support vector machine) for image processing, was presented: practical results show that it is possible to identify the ice in both cases. Nonetheless, the hyperspectral camera guarantees a more reliable solution reaching a higher level of accuracy of classified iced surfaces.


Energies ◽  
2020 ◽  
Vol 13 (13) ◽  
pp. 3340 ◽  
Author(s):  
Ehsan Harirchian ◽  
Tom Lahmer ◽  
Vandana Kumari ◽  
Kirti Jadhav

The economic losses from earthquakes tend to hit the national economy considerably; therefore, models that are capable of estimating the vulnerability and losses of future earthquakes are highly consequential for emergency planners with the purpose of risk mitigation. This demands a mass prioritization filtering of structures to identify vulnerable buildings for retrofitting purposes. The application of advanced structural analysis on each building to study the earthquake response is impractical due to complex calculations, long computational time, and exorbitant cost. This exhibits the need for a fast, reliable, and rapid method, commonly known as Rapid Visual Screening (RVS). The method serves as a preliminary screening platform, using an optimum number of seismic parameters of the structure and predefined output damage states. In this study, the efficacy of the Machine Learning (ML) application in damage prediction through a Support Vector Machine (SVM) model as the damage classification technique has been investigated. The developed model was trained and examined based on damage data from the 1999 Düzce Earthquake in Turkey, where the building’s data consists of 22 performance modifiers that have been implemented with supervised machine learning.


Heart ◽  
2013 ◽  
Vol 99 (suppl 2) ◽  
pp. A46.2-A46
Author(s):  
J A Rosengarten ◽  
S M Dima ◽  
C Panagiotou ◽  
P A Scott ◽  
K H O Chui ◽  
...  

Water ◽  
2021 ◽  
Vol 13 (12) ◽  
pp. 1612
Author(s):  
Susanna Dazzi ◽  
Renato Vacondio ◽  
Paolo Mignosa

Real-time river flood forecasting models can be useful for issuing flood alerts and reducing or preventing inundations. To this end, machine-learning (ML) methods are becoming increasingly popular thanks to their low computational requirements and to their reliance on observed data only. This work aimed to evaluate the ML models’ capability of predicting flood stages at a critical gauge station, using mainly upstream stage observations, though downstream levels should also be included to consider backwater, if present. The case study selected for this analysis was the lower stretch of the Parma River (Italy), and the forecast horizon was extended up to 9 h. The performances of three ML algorithms, namely Support Vector Regression (SVR), MultiLayer Perceptron (MLP), and Long Short-term Memory (LSTM), were compared herein in terms of accuracy and computational time. Up to 6 h ahead, all models provided sufficiently accurate predictions for practical purposes (e.g., Root Mean Square Error < 15 cm, and Nash-Sutcliffe Efficiency coefficient > 0.99), while peak levels were poorly predicted for longer lead times. Moreover, the results suggest that the LSTM model, despite requiring the longest training time, is the most robust and accurate in predicting peak values, and it should be preferred for setting up an operational forecasting system.


Mathematics ◽  
2020 ◽  
Vol 9 (1) ◽  
pp. 17
Author(s):  
Fazlollah Soleymani ◽  
Houman Masnavi ◽  
Stanford Shateyi

Bankruptcy prediction has been broadly investigated using financial ratios methodologies. One involved factor is the quality of the portfolio of loans which is given. Hence, having a model to classify/predict position of each loan candidate based on several features is important. In this work, an application of machine learning approach in mathematical finance and banking is discussed. It is shown how we can classify some lending portfolios of banks under several features such as rating categories and various maturities. Dynamic updates of the portfolio are also given along with the top probabilities showing how the financial data of this type can be classified. The discussions and results reveal that a good algorithm for doing such a classification on large economic data of such type is the k-nearest neighbors (KNN) with k=1 along with parallelization even over the support vector machine, random forest, and artificial neural network techniques to save as much as possible on computational time.


Sign in / Sign up

Export Citation Format

Share Document