scholarly journals Screw tightness and stripping rates vary between biomechanical researchers and practicing orthopaedic surgeons

2021 ◽  
Vol 16 (1) ◽  
Author(s):  
James W. A. Fletcher ◽  
Verena Neumann ◽  
Lisa Wenzel ◽  
Boyko Gueorguiev ◽  
R. Geoff Richards ◽  
...  

Abstract Background Screws are the most frequently inserted orthopaedic implants. Biomechanical, laboratory-based studies are used to provide a controlled environment to investigate revolutionary and evolutionary improvements in orthopaedic techniques. Predominantly, biomechanical trained, non-surgically practicing researchers perform these studies, whilst it will be orthopaedic surgeons who will put these procedures into practice on patients. Limited data exist on the comparative performance of surgically and non-surgically trained biomechanical researchers when inserting screws. Furthermore, any variation in performance by surgeons and/or biomechanical researchers may create an underappreciated confounder to biomechanical research findings. This study aimed to identify the differences between surgically and non-surgically trained biomechanical researchers’ achieved screw tightness and stripping rates with different fixation methods. Methods Ten orthopaedic surgeons and 10 researchers inserted 60 cortical screws each into artificial bone, for three different screw diameters (2.7, 3.5 and 4.5 mm), with 50% of screws inserted through plates and 50% through washers. Screw tightness, screw hole stripping rates and confidence in screw purchase were recorded. Three members of each group also inserted 30 screws using an augmented screwdriver, which indicated when optimum tightness was achieved. Results Unstripped screw tightness for orthopaedic surgeons and researchers was 82% (n = 928, 95% CI 81–83) and 76% (n = 1470, 95% CI 75–76) respectively (p < 0.001); surgeons stripped 48% (872/1800) of inserted screws and researchers 18% (330/1800). Using washers was associated with increased tightness [80% (95% CI 80–81), n = 1196] compared to screws inserted through plates [76% (95% CI 75–77), n = 1204] (p < 0.001). Researchers were more accurate in their overall assessment of good screw insertion (86% vs. 62%). No learning effect occurred when comparing screw tightness for the first 10 insertions against the last 10 insertions for any condition (p = 0.058–0.821). Augmented screwdrivers, indicating optimum tightness, reduced stripping rates from 34 to 21% (p < 0.001). Experience was not associated with improved performance in screw tightness or stripping rates for either group (p = 0.385–0.965). Conclusions Surgeons and researchers showed different screw tightness under the same in vitro conditions, with greater rates of screw hole stripping by surgeons. This may have important implications for the reproducibility and transferability of research findings from different settings depending on who undertakes the experiments.

1998 ◽  
Vol 11 (04) ◽  
pp. 200-204 ◽  
Author(s):  
K. Kelly ◽  
G. S. Martin ◽  
D. J. Burba ◽  
S. A. Sedrish ◽  
R. M. Moore

SummaryThe purpose of the study was to determine and to compare the in vitro pullout strength of 5.5 mm cortical versus 6.5 mm cancellous bone screws inserted in the diaphysis and metaphysis of foal third metacarpal (MCIII) bones in threaded 4.5 mm cortical bone screw insertion holes that were then overdrilled with a 4.5 mm drill bit. This information is relevant to the selection of a replacement screw if a 4.5 mm cortical screw is stripped during orthopaedic surgery. In vitro pullout tests were performed in two independent cadaver studies, each consisting of 12 foal MCIII bones. Two 4.5 mm cortical screws were placed either in the mid-diaphysis (study 1) or distal metaphysis (study 2) of MCIII bones. The holes were then overdrilled with a 4.5 mm bit and had either a 5.5 mm cortical or a 6.5 mm cancellous screw inserted; screw pullout tests were performed at a rate of 0.04 mm/s until screw or bone failure occurred.The bone failed in all of the tests in the diaphyseal and metaphyseal bone. The holding power for 6.5 mm cancellous screws was significantly (p <0.05) greater than for 5.5 mm cortical screws in both the diaphysis and metaphysis. There was not any difference in the holding power of screws in either the diaphysis or the metaphysis between proximal and distal screw holes.If a 4.5 mm cortical bone screw strips in MCIII diaphyseal or metaphyseal bone of foals, a 6.5 mm cancellous screw would provide greater holding power than a 5.5 mm cortical screw.In order to provide information regarding selection of a replacement screw if a 4.5 mm cortical screw is stripped, the in vitro pullout strength was determined for 5.5 mm cortical and 6.5 mm cancellous screws inserted in third metacarpal diaphyseal and metaphyseal bone of foals in which threaded 4.5 mm cortical bone screw insertion holes had been overdrilled with a 4.5 mm bit. The holding power of the 6.5 mm cancellous screw was significantly greater than the 5.5 mm cortical screw in both the diaphysis and metaphysis of foal third metacarpal bone. Thus, it appears that if a 4.5 mm cortical screw is stripped during orthopaedic surgery in foals, a 6.5 mm cancellous screw would provide superior holding power.


Pharmaceutics ◽  
2020 ◽  
Vol 12 (11) ◽  
pp. 1130
Author(s):  
Mariana Pires Figueiredo ◽  
Ana Borrego-Sánchez ◽  
Fátima García-Villén ◽  
Dalila Miele ◽  
Silvia Rossi ◽  
...  

This work presents the development of multifunctional therapeutic membranes based on a high-performance block copolymer scaffold formed by polyether (PE) and polyamide (PA) units (known as PEBA) and layered double hydroxide (LDH) biomaterials, with the aim to study their uses as wound dressings. Two LDH layer compositions were employed containing Mg2+ or Zn2+, Fe3+ and Al3+ cations, intercalated with chloride anions, abbreviated as Mg-Cl or Zn-Cl, or intercalated with naproxenate (NAP) anions, abbreviated as Mg-NAP or Zn-NAP. Membranes were structurally and physically characterized, and the in vitro drug release kinetics and cytotoxicity assessed. PEBA-loading NaNAP salt particles were also prepared for comparison. Intercalated NAP anions improved LDH–polymer interaction, resulting in membranes with greater mechanical performance compared to the polymer only or to the membranes containing the Cl-LDHs. Drug release (in saline solution) was sustained for at least 8 h for all samples and release kinetics could be modulated: a slower, an intermediate and a faster NAP release were observed from membranes containing Zn-NAP, NaNAP and Mg-NAP particles, respectively. In general, cell viability was higher in the presence of Mg-LDH and the membranes presented improved performance in comparison with the powdered samples. PEBA containing Mg-NAP sample stood out among all membranes in all the evaluated aspects, thus being considered a great candidate for application as multifunctional therapeutic dressings.


2021 ◽  
Vol 20 (1) ◽  
Author(s):  
Jungang Li ◽  
Chaoqian Zhao ◽  
Chun Liu ◽  
Zhenyu Wang ◽  
Zeming Ling ◽  
...  

Abstract Background The bone regeneration of artificial bone grafts is still in need of a breakthrough to improve the processes of bone defect repair. Artificial bone grafts should be modified to enable angiogenesis and thus improve osteogenesis. We have previously revealed that crystalline Ca10Li(PO4)7 (CLP) possesses higher compressive strength and better biocompatibility than that of pure beta-tricalcium phosphate (β-TCP). In this work, we explored the possibility of cobalt (Co), known for mimicking hypoxia, doped into CLP to promote osteogenesis and angiogenesis. Methods We designed and manufactured porous scaffolds by doping CLP with various concentrations of Co (0, 0.1, 0.25, 0.5, and 1 mol%) and using 3D printing techniques. The crystal phase, surface morphology, compressive strength, in vitro degradation, and mineralization properties of Co-doped and -undoped CLP scaffolds were investigated. Next, we investigated the biocompatibility and effects of Co-doped and -undoped samples on osteogenic and angiogenic properties in vitro and on bone regeneration in rat cranium defects. Results With increasing Co-doping level, the compressive strength of Co-doped CLP scaffolds decreased in comparison with that of undoped CLP scaffolds, especially when the Co-doping concentration increased to 1 mol%. Co-doped CLP scaffolds possessed excellent degradation properties compared with those of undoped CLP scaffolds. The (0.1, 0.25, 0.5 mol%) Co-doped CLP scaffolds had mineralization properties similar to those of undoped CLP scaffolds, whereas the 1 mol% Co-doped CLP scaffolds shown no mineralization changes. Furthermore, compared with undoped scaffolds, Co-doped CLP scaffolds possessed excellent biocompatibility and prominent osteogenic and angiogenic properties in vitro, notably when the doping concentration was 0.25 mol%. After 8 weeks of implantation, 0.25 mol% Co-doped scaffolds had markedly enhanced bone regeneration at the defect site compared with that of the undoped scaffold. Conclusion In summary, CLP doped with 0.25 mol% Co2+ ions is a prospective method to enhance osteogenic and angiogenic properties, thus promoting bone regeneration in bone defect repair.


Cancers ◽  
2021 ◽  
Vol 13 (6) ◽  
pp. 1334
Author(s):  
Ye Liu ◽  
Zahra Mohri ◽  
Wissal Alsheikh ◽  
Umber Cheema

The development of biomimetic, human tissue models is recognized as being an important step for transitioning in vitro research findings to the native in vivo response. Oftentimes, 2D models lack the necessary complexity to truly recapitulate cellular responses. The introduction of physiological features into 3D models informs us of how each component feature alters specific cellular response. We conducted a systematic review of research papers where the focus was the introduction of key biomimetic features into in vitro models of cancer, including 3D culture and hypoxia. We analysed outcomes from these and compiled our findings into distinct groupings to ascertain which biomimetic parameters correlated with specific responses. We found a number of biomimetic features which primed cancer cells to respond in a manner which matched in vivo response.


2014 ◽  
Vol 2014 ◽  
pp. 1-32 ◽  
Author(s):  
Shamkant B. Badgujar ◽  
Vainav V. Patel ◽  
Atmaram H. Bandivdekar

Foeniculum vulgareMill commonly called fennel has been used in traditional medicine for a wide range of ailments related to digestive, endocrine, reproductive, and respiratory systems. Additionally, it is also used as a galactagogue agent for lactating mothers. The review aims to gather the fragmented information available in the literature regarding morphology, ethnomedicinal applications, phytochemistry, pharmacology, and toxicology ofFoeniculum vulgare. It also compiles available scientific evidence for the ethnobotanical claims and to identify gaps required to be filled by future research. Findings based on their traditional uses and scientific evaluation indicates thatFoeniculum vulgareremains to be the most widely used herbal plant. It has been used for more than forty types of disorders. Phytochemical studies have shown the presence of numerous valuable compounds, such as volatile compounds, flavonoids, phenolic compounds, fatty acids, and amino acids. Compiled data indicate their efficacy in severalin vitroandin vivopharmacological properties such as antimicrobial, antiviral, anti-inflammatory, antimutagenic, antinociceptive, antipyretic, antispasmodic, antithrombotic, apoptotic, cardiovascular, chemomodulatory, antitumor, hepatoprotective, hypoglycemic, hypolipidemic, and memory enhancing property.Foeniculum vulgarehas emerged as a good source of traditional medicine and it provides a noteworthy basis in pharmaceutical biology for the development/formulation of new drugs and future clinical uses.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
C. Autilio ◽  
M. Echaide ◽  
A. Cruz ◽  
C. Mouton ◽  
A. Hidalgo ◽  
...  

AbstractTherapeutic hypothermia (TH) enhances pulmonary surfactant performance in vivo by molecular mechanisms still unknown. Here, the interfacial structure and the composition of lung surfactant films have been analysed in vitro under TH as well as the molecular basis of its improved performance both under physiological and inhibitory conditions. The biophysical activity of a purified porcine surfactant was tested under slow and breathing-like dynamics by constrained drop surfactometry (CDS) and in the captive bubble surfactometer (CBS) at both 33 and 37 °C. Additionally, the temperature-dependent surfactant activity was also analysed upon inhibition by plasma and subsequent restoration by further surfactant supplementation. Interfacial performance was correlated with lateral structure and lipid composition of films made of native surfactant. Lipid/protein mixtures designed as models to mimic different surfactant contexts were also studied. The capability of surfactant to drastically reduce surface tension was enhanced at 33 °C. Larger DPPC-enriched domains and lower percentages of less active lipids were detected in surfactant films exposed to TH-like conditions. Surfactant resistance to plasma inhibition was boosted and restoration therapies were more effective at 33 °C. This may explain the improved respiratory outcomes observed in cooled patients with acute respiratory distress syndrome and opens new opportunities in the treatment of acute lung injury.


2021 ◽  
Vol 70 (10) ◽  
Author(s):  
Kazuyoshi Gotoh ◽  
Makoto Miyoshi ◽  
I Putu Bayu Mayura ◽  
Koji Iio ◽  
Osamu Matsushita ◽  
...  

The options available for treating infections with carbapenemase-producing Enterobacteriaceae (CPE) are limited; with the increasing threat of these infections, new treatments are urgently needed. Biapenem (BIPM) is a carbapenem, and limited data confirming its in vitro killing effect against CPE are available. In this study, we examined the minimum inhibitory concentrations (MICs) and minimum bactericidal concentrations (MBCs) of BIPM for 14 IMP-1-producing Enterobacteriaceae strains isolated from the Okayama region in Japan. The MICs against almost all the isolates were lower than 0.5 µg ml−1, indicating susceptibility to BIPM, while approximately half of the isolates were confirmed to be bacteriostatic to BIPM. However, initial killing to a 99.9 % reduction was observed in seven out of eight strains in a time–kill assay. Despite the small data set, we concluded that the in vitro efficacy of BIPM suggests that the drug could be a new therapeutic option against infection with IMP-producing CPE.


2018 ◽  
Vol 56 (12) ◽  
Author(s):  
Twisha S. Patel ◽  
Peggy L. Carver ◽  
Gregory A. Eschenauer

ABSTRACT The purpose of this review is to critically analyze published data evaluating the impact of azole pharmacokinetic and pharmacodynamic parameters, MICs, and Candida species on clinical outcomes in patients with candidemia. Clinical breakpoints (CBPs) for fluconazole and voriconazole, which are used to determine susceptibility, have been defined by the Clinical and Laboratory Standards Institute (CLSI) for Candida species. Studies evaluating the relationship between treatment efficacy and in vitro susceptibility, as well as the pharmacodynamic targets, have been conducted in patients treated with fluconazole for candidemia; however, for species other than Candida albicans and Candida glabrata, and for other forms of invasive candidiasis, data remain limited and randomized trials are not available. Limited data evaluating these relationships with voriconazole are available. While pharmacodynamic targets for posaconazole and isavuconazole have been proposed based upon studies conducted in murine models, CBPs have not been established by CLSI. Fluconazole remains an important antifungal agent for the treatment of candidemia, and data supporting its use based on in vitro susceptibility are growing, particularly for C. albicans and C. glabrata. Further investigation is needed to establish the roles of voriconazole, posaconazole, and isavuconazole in the treatment of candidemia and for all agents in the treatment of other forms of invasive candidiasis.


1998 ◽  
Vol 88 (10) ◽  
pp. 471-482 ◽  
Author(s):  
ED Ward ◽  
RD Phillips ◽  
PE Patterson ◽  
GJ Werkhoven

The effects of muscular activity on the distribution of forces under the foot, as well as within the foot, are of great importance for determining the mechanisms of foot pathologies. Limited data exist concerning muscle forces during the gait cycle and the effects of muscle forces conveyed to the ground-reactive forces of the foot. The authors developed a cadaveric loading system to determine the effects of force applied to the Achilles tendon on the forefoot-to-rearfoot loading relationship in eight cadaveric specimens. The study indicated that, during axial loading of the tibia, force was inherently transferred from the rearfoot to the forefoot. However, the observed forefoot-to-rearfoot loading relationship did not match the predicted loading relationship from a rigid-body diagram, as would be observed in a class I lever. The results indicated that, as the force was increased on the Achilles tendon, the change in loads on the forefoot and rearfoot was not linear. Specimens with calcaneal inclination angles greater than 20 degrees demonstrated a more linear increase as compared with those with inclination angles less than 20 degrees.


2009 ◽  
Vol 18 (9) ◽  
pp. 1300-1313 ◽  
Author(s):  
Heiko Koller ◽  
Wolfgang Hitzl ◽  
Frank Acosta ◽  
Mark Tauber ◽  
Juliane Zenner ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document