scholarly journals Chimeric antigen receptor natural killer (CAR-NK) cell design and engineering for cancer therapy

2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Ying Gong ◽  
Roel G. J. Klein Wolterink ◽  
Jianxiang Wang ◽  
Gerard M. J. Bos ◽  
Wilfred T. V. Germeraad

AbstractDue to their efficient recognition and lysis of malignant cells, natural killer (NK) cells are considered as specialized immune cells that can be genetically modified to obtain capable effector cells for adoptive cellular treatment of cancer patients. However, biological and technical hurdles related to gene delivery into NK cells have dramatically restrained progress. Recent technological advancements, including improved cell expansion techniques, chimeric antigen receptors (CAR), CRISPR/Cas9 gene editing and enhanced viral transduction and electroporation, have endowed comprehensive generation and characterization of genetically modified NK cells. These promising developments assist scientists and physicians to design better applications of NK cells in clinical therapy. Notably, redirecting NK cells using CARs holds important promise for cancer immunotherapy. Various preclinical and a limited number of clinical studies using CAR-NK cells show promising results: efficient elimination of target cells without side effects, such as cytokine release syndrome and neurotoxicity which are seen in CAR-T therapies. In this review, we focus on the details of CAR-NK technology, including the design of efficient and safe CAR constructs and associated NK cell engineering techniques: the vehicles to deliver the CAR-containing transgene, detection methods for CARs, as well as NK cell sources and NK cell expansion. We summarize the current CAR-NK cell literature and include valuable lessons learned from the CAR-T cell field. This review also provides an outlook on how these approaches may transform current clinical products and protocols for cancer treatment.

Blood ◽  
2018 ◽  
Vol 132 (Supplement 1) ◽  
pp. 4550-4550 ◽  
Author(s):  
Xiaomei Wang ◽  
Wei-Chun Chang ◽  
Daniel L. Jasinski ◽  
Jan L. Medina ◽  
Ming Zhang ◽  
...  

Abstract Background Natural Killer (NK) lymphocytes possess innate anti-tumor activity that has the potential to be used as an allogeneic cell therapy due to reduced GvHD risk relative to αβ T cells. Despite their potential, adoptive NK cell immunotherapies have been limited by poor expansion in vivo. Using our previously developed Chimeric Antigen Receptor-T cell (CAR-T) strategy that relies on rimiducid-based dimerization of inducible MyD88/CD40 (iMC) to regulate T cell expansion and survival, we demonstrate that iMC can also be applied to NK cell growth and anti-tumor efficacy in vitro and in vivo. Moreover, a rapamycin-inducible Caspase-9 (iRC9) was used to provide an orthogonally regulated safety switch. Methods and Results CD56+ NK cells were isolated from peripheral blood of human donors, stimulated overnight with IL-15 then activated by seeding with K562 erythroleukemia target cells. NK cells were then transduced with γ-retrovirus encoding control iRC9-2A-ΔCD19, iRC9-2A-ΔCD19-2A-iMC (dual-switch NK) or iRC9-2A-IL-15-2A-ΔCD19-2A-iMC (dual-switch/IL-15 NK). ΔCD19 marked transduced cells in 50:50 cocultures with untransduced NK cells. NK cells containing only iRC9 grew at the same rate as untransduced cells, but iMC-expressing NK cells displayed enhanced growth that was further augmented by 1 nM rimiducid treatment. In cocultures with THP1 acute myeloid leukemia cells at increasing Target:Effector (T:E) ratios, presence (P < 0.001, two way ANOVA) and activation (P <0.001) of iMC increased tumor killing activity. Inflammatory cytokine and chemokine production was also dramatically (10 to 1000-fold) elevated by the expression and activation of iMC in NK cells in the presence and absence of THP1 tumor target. To study in vivo anti-tumor activity, immunodeficient NSG mice were engrafted with dual-switch NK cells with or without autocrine IL-15 expression in the presence or absence of THP-1 tumor targets. When tumor was present, unstimulated iMC with IL-15 or activation of iMC without IL-15 expression supported modest NK cell expansion, but rimiducid stimulation of iMC plus autocrine IL-15 showed enhanced NK expansion in vivo. Furthermore, in tumor-free animals only dual-switch/IL-15 NK cells with weekly rimiducid stimulation expanded and persisted in vivo (up to 7 weeks). Cotransduction of a first generation CD123-targeted CAR to produce dual-switch/IL-15 CD123CAR-NK cells led to rimiducid-dependent control of THP1 tumor outgrowth in vivo beyond 40 days. Conversely, temsirolimus-mediated activation of the iRC9 safety switch rapidly (< 24 hours) ablated dual-switch NK cells in vivo. Conclusions Inducible MyD88/CD40 is an activation switch that supports NK cell expansion, persistence and anti-tumor activity. When paired with autocrine IL-15 expression, this platform supports NK expansion and persistence in vivo, and AML tumoricidal activity that can be further activated by target-specific CAR expression. Moreover, the fast-acting, orthogonally regulated proapoptotic switch, iRC9, mitigates the risk of off-tumor targeting. Therefore, we describe a novel, regulated NK cell platform that solves many of the challenges of NK cell-based therapy and should be amenable to a readily translatable off-the-shelf cellular therapy for malignancies. Disclosures Wang: Bellicum Pharmaceuticals: Employment, Equity Ownership. Chang:Bellicum Pharmaceuticals: Employment, Equity Ownership. Jasinski:Bellicum Pharmaceuticals: Employment, Equity Ownership. Medina:Bellicum Pharmaceuticals: Employment, Equity Ownership. Zhang:Bellicum Pharmaceuticals: Employment, Equity Ownership. Foster:Bellicum: Employment, Equity Ownership. Spencer:Bellicum Pharmaceuticals: Employment, Equity Ownership. Bayle:Bellicum Pharmaceuticals: Employment, Equity Ownership.


Blood ◽  
2007 ◽  
Vol 110 (11) ◽  
pp. 2743-2743 ◽  
Author(s):  
Hiroyuki Fujisaki ◽  
Harumi Kakuda ◽  
Timothy Lockey ◽  
Paul W. Eldridge ◽  
Wing Leung ◽  
...  

Abstract Approximately half of the patients with acute myeloid leukemia (AML) harbor occult disease during therapy, leading to overt relapse. Novel treatments are needed to advance cure rates. AML cells are sensitive to natural killer (NK) cell cytotoxicity if they express HLA Class I molecules that do not bind killer-inhibitory receptors (KIR) on NK cells. The demonstration that haploidentical NK cells can expand in vivo and exert anti-AML activity when infused after non-myeloablative conditioning (Miller et al., Blood105: 3051, 2005), provided impetus to further explore their clinical potential and develop ways to increase their efficacy. The success of NK cell therapy depends on: i) mismatch in recipient HLA and donor KIR phenotype, allowing NK cell alloreactivity; ii) infusion of sufficient numbers of NK cells to achieve an effector: target (E:T) ratio that produces a significant leukemia cytoreduction. We found that K562 cells genetically modified to express membrane-bound IL-15 and 4-1BB ligand (K562-mb15-41BBL) induced expansion of human NK cells (Imai et al., Blood106: 376, 2005). In the present study, we first tested the stimulatory capacity of irradiated K562-mb15-41BBL in 34 additional healthy donors: CD56+ CD3− NK cell expansion after 7–10 days of culture was 5–87 fold (median, 22); after 21 days, NK cells could expand >1000 fold. CD3+ T cells expanded minimally or not at all. NK cells derived from 12 healthy donors were tested against the AML cell lines K562, KG-1, U937 and HL-60. Expanded NK cells were consistently cytotoxic at low E:T ratios. Thus, mean (± SD) cytotoxicity after 4 hrs at 4: 1 was 85.1% ± 8.7% for K562, 83.7% ± 9.4% for KG-1, 78.8% ± 15.2% for U937 and 94.8% ± 5.1% for HL-60. Expanded NK cells were effective even when outnumbered by target cells: at a 0.5: 1 ratio, cytotoxicities were 34.1% ± 14.7% with K562, 51.5% ± 16.5% with KG-1, 24.5% ± 14.8% with U937 and 52.1% ± 9.8% with HL-60. We next tested cytotoxicity of expanded NK cells from 10 donors against primary cells obtained from the bone marrow of 9 newly diagnosed patients with AML. Median cytotoxicity after 4 hrs of culture at a 4: 1 ratio was high, although interdonor variability was observed, with cytoxicities ranging from 22% to 90%. When expanded NK cells were cultured for 7 days with primary AML cells in the presence of bone marrow mesenchymal cells (to prevent spontaneous apoptosis of the AML cells) we could detect cytotoxicity at a 0.01:1 E:T ratio. Expanded NK cells were consistently more cytotoxic than primary NK cells from the same donor. Gene expression studies revealed marked changes in expression of adhesion molecules and cytokine transcripts after expansion. Expanded NK cells exerted considerable antileukemic effect in NOD-SCID-IL2Rgammanull mice engrafted with human AML cells, providing a strong rationale for their clinical testing. To this end, the K562-mb15-41BBL stimulatory cell line is currently being made under cGMP conditions and conditions for large-scale NK cell expansion have been established in support of a pilot protocol in which expanded haploidentical NK cells with be administered to patients with refractory AML.


2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Christoph Mark ◽  
Tina Czerwinski ◽  
Susanne Roessner ◽  
Astrid Mainka ◽  
Franziska Hörsch ◽  
...  

Abstract Natural killer (NK) cells are important effector cells in the immune response to cancer. Clinical trials on adoptively transferred NK cells in patients with solid tumors, however, have thus far been unsuccessful. As NK cells need to pass stringent safety evaluation tests before clinical use, the cells are cryopreserved to bridge the necessary evaluation time. Standard degranulation and chromium release cytotoxicity assays confirm the ability of cryopreserved NK cells to kill target cells. Here, we report that tumor cells embedded in a 3-dimensional collagen gel, however, are killed by cryopreserved NK cells at a 5.6-fold lower rate compared to fresh NK cells. This difference is mainly caused by a 6-fold decrease in the fraction of motile NK cells after cryopreservation. These findings may explain the persistent failure of NK cell therapy in patients with solid tumors and highlight the crucial role of a 3-D environment for testing NK cell function.


2021 ◽  
Vol 22 (7) ◽  
pp. 3489
Author(s):  
Takayuki Morimoto ◽  
Tsutomu Nakazawa ◽  
Ryosuke Matsuda ◽  
Fumihiko Nishimura ◽  
Mitsutoshi Nakamura ◽  
...  

Glioblastoma (GBM) is the most common and aggressive primary malignant brain tumor in adults. Natural Killer (NK) cells are potent cytotoxic effector cells against tumor cells inducing GBM cells; therefore, NK cell based- immunotherapy might be a promising target in GBM. T cell immunoglobulin mucin family member 3 (TIM3), a receptor expressed on NK cells, has been suggested as a marker of dysfunctional NK cells. We established TIM3 knockout in NK cells, using the clustered regularly interspaced short palindromic repeats (CRISPR)-CRISPR-associated protein 9 (Cas9). Electroporating of TIM3 exon 2- or exon 5-targeting guide RNA- Cas9 protein complexes (RNPs) inhibited TIM3 expression on NK cells with varying efficacy. T7 endonuclease I mutation detection assays showed that both RNPs disrupted the intended genome sites. The expression of other checkpoint receptors, i.e., programmed cell death 1 (PD1), Lymphocyte-activation gene 3 (LAG3), T cell immunoreceptor with Ig and ITIM domains (TIGIT), and TACTILE (CD96) were unchanged on the TIM3 knockout NK cells. Real time cell growth assays revealed that TIM3 knockout enhanced NK cell–mediated growth inhibition of GBM cells. These results demonstrated that TIM3 knockout enhanced human NK cell mediated cytotoxicity on GBM cells. Future, CRISPR-Cas9 mediated TIM3 knockout in NK cells may prove to be a promising immunotherapeutic alternative in patient with GBM.


Cells ◽  
2021 ◽  
Vol 10 (6) ◽  
pp. 1420
Author(s):  
Jagoda Siemaszko ◽  
Aleksandra Marzec-Przyszlak ◽  
Katarzyna Bogunia-Kubik

Natural Killer (NK) cells are natural cytotoxic, effector cells of the innate immune system. They can recognize transformed or infected cells. NK cells are armed with a set of activating and inhibitory receptors which are able to bind to their ligands on target cells. The right balance between expression and activation of those receptors is fundamental for the proper functionality of NK cells. One of the best known activating receptors is NKG2D, a member of the CD94/NKG2 family. Due to a specific NKG2D binding with its eight different ligands, which are overexpressed in transformed, infected and stressed cells, NK cells are able to recognize and attack their targets. The NKG2D receptor has an enormous significance in various, autoimmune diseases, viral and bacterial infections as well as for transplantation outcomes and complications. This review focuses on the NKG2D receptor, the mechanism of its action, clinical relevance of its gene polymorphisms and a potential application in various clinical settings.


2018 ◽  
Vol 2018 ◽  
pp. 1-9 ◽  
Author(s):  
Corona Solana ◽  
Raquel Tarazona ◽  
Rafael Solana

Alzheimer’s disease (AD) represents the most common cause of dementia in the elderly. AD is a neurodegenerative disorder characterized by progressive memory loss and cognitive decline. Although the aetiology of AD is not clear, both environmental factors and heritable predisposition may contribute to disease occurrence. In addition, inflammation and immune system alterations have been linked to AD. The prevailing hypothesis as cause of AD is the deposition in the brain of amyloid beta peptides (Aβ). Although Aβ have a role in defending the brain against infections, their accumulation promotes an inflammatory response mediated by microglia and astrocytes. The production of proinflammatory cytokines and other inflammatory mediators such as prostaglandins and complement factors favours the recruitment of peripheral immune cells further promoting neuroinflammation. Age-related inflammation and chronic infection with herpes virus such as cytomegalovirus may also contribute to inflammation in AD patients. Natural killer (NK) cells are innate lymphoid cells involved in host defence against viral infections and tumours. Once activated NK cells secrete cytokines such as IFN-γ and TNF-α and chemokines and exert cytotoxic activity against target cells. In the elderly, changes in NK cell compartment have been described which may contribute to the lower capacity of elderly individuals to respond to pathogens and tumours. Recently, the role of NK cells in the immunopathogenesis of AD is discussed. Although in AD patients the frequency of NK cells is not affected, a high NK cell response to cytokines has been described together with NK cell dysregulation of signalling pathways which is in part involved in this altered behaviour.


1993 ◽  
Vol 178 (3) ◽  
pp. 961-969 ◽  
Author(s):  
M S Malnati ◽  
P Lusso ◽  
E Ciccone ◽  
A Moretta ◽  
L Moretta ◽  
...  

Natural killer (NK) cells provide a first line of defense against viral infections. The mechanisms by which NK cells recognize and eliminate infected cells are still largely unknown. To test whether target cell elements contribute to NK cell recognition of virus-infected cells, human NK cells were cloned from two unrelated donors and assayed for their ability to kill normal autologous or allogeneic cells before and after infection by human herpesvirus 6 (HHV-6), a T-lymphotropic herpesvirus. Of 132 NK clones isolated from donor 1, all displayed strong cytolytic activity against the NK-sensitive cell line K562, none killed uninfected autologous T cells, and 65 (49%) killed autologous T cells infected with HHV-6. A panel of representative NK clones from donors 1 and 2 was tested on targets obtained from four donors. A wide heterogeneity was observed in the specificity of lysis of infected target cells among the NK clones. Some clones killed none, some killed only one, and others killed more than one of the different HHV-6-infected target cells. Killing of infected targets was not due to complete absence of class I molecules because class I surface levels were only partially affected by HHV-6 infection. Thus, target cell recognition is not controlled by the effector NK cell alone, but also by polymorphic elements on the target cell that restrict NK cell recognition. Furthermore, NK clones from different donors display a variable range of specificities in their recognition of infected target cells.


1996 ◽  
Vol 184 (6) ◽  
pp. 2119-2128 ◽  
Author(s):  
L.H. Mason ◽  
S.K. Anderson ◽  
W.M. Yokoyama ◽  
H.R.C. Smith ◽  
R. Winkler-Pickett ◽  
...  

Proteins encoded by members of the Ly-49 gene family are predominantly expressed on murine natural killer (NK) cells. Several members of this gene family have been demonstrated to inhibit NK cell lysis upon recognizing their class I ligands on target cells. In this report, we present data supporting that not all Ly-49 proteins inhibit NK cell function. Our laboratory has generated and characterized a monoclonal antibody (mAb) (12A8) that can be used to recognize the Ly-49D subset of murine NK cells. Transfection of Cos-7 cells with known members of the Ly-49 gene family revealed that 12A8 recognizes Ly-49D, but also cross-reacts with the Ly-49A protein on B6 NK cells. In addition, 12A8 demonstrates reactivity by both immunoprecipitation and two-color flow cytometry analysis with an NK cell subset that is distinct from those expressing Ly-49A, C, or G2. An Ly-49D+ subset of NK cells that did not express Ly49A, C, and G2 was isolated and examined for their functional capabilities. Tumor targets and concanovalin A (ConA) lymphoblasts from a variety of H2 haplotypes were examined for their susceptibility to lysis by Ly-49D+ NK cells. None of the major histocompatibility complex class I–bearing targets inhibited lysis of Ly-49D+ NK cells. More importantly, we demonstrate that the addition of mAb 12A8 to Ly-49D+ NK cells can augment lysis of FcγR+ target cells in a reverse antibody-dependent cellular cytotoxicity–type assay and induces apoptosis in Ly49D+ NK cells. Furthermore, the cytoplasmic domain of Ly-49D does not contain the V/IxYxxL immunoreceptor tyrosine-based inhibitory motif found in Ly-49A, C, or G2 that has been characterized in the human p58 killer inhibitory receptors. Therefore, Ly-49D is the first member of the Ly-49 family characterized as transmitting positive signals to NK cells, rather than inhibiting NK cell function.


1995 ◽  
Vol 79 (3) ◽  
pp. 732-737 ◽  
Author(s):  
S. J. Won ◽  
M. T. Lin

The effects of different ambient temperatures (Ta) on the splenic natural killer (NK) cell activity, effector-target cell conjugation activity, and NK cell numbers were assessed in male inbred C3H/HeNCrj mice (7–10 wk old). The splenic NK cytotoxic activities were examined in a 4-h 51Cr release assay in mouse spleen cells that were obtained 1, 2, 4, 8, or 16 days after exposure to Ta of 22, 4, or 35 degrees C. The percentage of conjugating lymphocytes was calculated by counting the number of single lymphocytes bound to single target cells per 400 effector cells. The numbers of NK cells were expressed by the percentage of 5E6-positive cells. The 5E6 identifies only a subset of NK cells. It was found that the splenic NK cell activity, the effector-target cell conjugation activity, or the NK cell number began to fall 1 day after cold (Ta 4 degrees C) or heat (Ta 35 degrees C) stress. After a 16-day period of either cold or heat exposure, the fall in the splenic NK cell activity, the effector-target cell conjugation activity, or the number of 5E6-positive subsets of NK cells was still evident. Compared with those of the control group (Ta 22 degrees C), the cold-stressed mice had higher adrenal cortisol concentration and lower colonic temperature, whereas the heat-stressed animals had higher adrenal cortisol concentration and higher colonic temperature during a 16-day period of thermal exposure. However, neither cold nor heat stress affected both the body weight gain and the spleen weight in our mice.


2014 ◽  
Vol 89 (1) ◽  
pp. 97-109 ◽  
Author(s):  
Shayarana L. Gooneratne ◽  
Jonathan Richard ◽  
Wen Shi Lee ◽  
Andrés Finzi ◽  
Stephen J. Kent ◽  
...  

ABSTRACTMany attempts to design prophylactic human immunodeficiency virus type 1 (HIV-1) vaccines have focused on the induction of neutralizing antibodies (Abs) that block infection by free virions. Despite the focus on viral particles, virus-infected cells, which can be found within mucosal secretions, are more infectious than free virus bothin vitroandin vivo. Furthermore, assessment of human transmission couples suggests infected seminal lymphocytes might be responsible for a proportion of HIV-1 transmissions. Although vaccines that induce neutralizing Abs are sought, only some broadly neutralizing Abs efficiently block cell-to-cell transmission of HIV-1. As HIV-1 vaccines need to elicit immune responses capable of controlling both free and cell-associated virus, we evaluated the potential of natural killer (NK) cells to respond in an Ab-dependent manner to allogeneic T cells bearing HIV-1 antigens. This study presents data measuring Ab-dependent anti-HIV-1 NK cell responses to primary and transformed allogeneic T-cell targets. We found that NK cells are robustly activated in an anti-HIV-1 Ab-dependent manner against allogeneic targets and that tested target cells are subject to Ab-dependent cytolysis. Furthermore, the educated KIR3DL1+NK cell subset from HLA-Bw4+individuals exhibits an activation advantage over the KIR3DL1−subset that contains both NK cells educated through other receptor/ligand combinations and uneducated NK cells. These results are intriguing and important for understanding the regulation of Ab-dependent NK cell responses and are potentially valuable for designing Ab-dependent therapies and/or vaccines.IMPORTANCENK cell-mediated anti-HIV-1 antibody-dependent functions have been associated with protection from infection and disease progression; however, their role in protecting from infection with allogeneic cells infected with HIV-1 is unknown. We found that HIV-1-specific ADCC antibodies bound to allogeneic cells infected with HIV-1 or coated with HIV-1 gp120 were capable of activating NK cells and/or trigging cytolysis of the allogeneic target cells. This suggests ADCC may be able to assist in preventing infection with cell-associated HIV-1. In order to fully utilize NK cell-mediated Ab-dependent effector functions, it might also be important that educated NK cells, which hold the highest activation potential, can become activated against targets bearing HIV-1 antigens and expressing the ligands for self-inhibitory receptors. Here, we show that with Ab-dependent stimulation, NK cells expressing inhibitory receptors can mediate robust activation against targets expressing the ligands for those receptors.


Sign in / Sign up

Export Citation Format

Share Document