scholarly journals A novel coconut-malt extract medium increases growth rate of morels in pure culture

AMB Express ◽  
2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Fabiola Rodríguez Evangelista ◽  
Isaac Chairez ◽  
Sigfrido Sierra ◽  
Hermilo Leal Lara ◽  
César Ramiro Martínez-González ◽  
...  

AbstractMorels are gourmet wild edible mushrooms that can grow on several substrates with significant growth rate variations. Such variations have hindered the development of a standardized culture media to promote morel’s sustainable production. The aim of this study is developing a novel culture media that takes advantage of coconut water as a complementary component of culture media. Coconut water has been extensively used as a growth-promoting component for plant tissue cultures; however, its application as component of fungi cultivation medium has not been fully developed. This study confirms that coconut water can be efficiently used as culture media component for morels using a kinetic characterization. Morchella sp. kinetic growth is evaluated in different cultures: agar, malt extract agar (MEA), lactose, coconut water (15%) and combinations of them. Kinetic growth parameters (lag phase, λ and maximum specific growth rate, µmax) are estimated using primary modeling methods. Among the selected models, the best fit is achieved using Baranyi’s model. A significant increase from 15.8% to 43.4% of the µmax values was observed when culture media (agar, lactose, MEA) is supplemented with coconut water. The largest values of µmax are obtained in MEA-coconut cultures (21.13 ± 0.43–22.57 ± 0.35). Micro-sclerotia and late sclerotia are observed in all cultures containing coconut water justifying the development of a feasible and cost-effective way of culturing morels. The results demonstrate that coconut water can be used for formulation of standard media for morel cultivation leading to a cheap alternative to produce dense mycelium and promote sclerotia formation.

2017 ◽  
Vol 80 (3) ◽  
pp. 447-453 ◽  
Author(s):  
Ai Kataoka ◽  
Hua Wang ◽  
Philip H. Elliott ◽  
Richard C. Whiting ◽  
Melinda M. Hayman

ABSTRACT The growth characteristics of Listeria monocytogenes inoculated onto frozen foods (corn, green peas, crabmeat, and shrimp) and thawed by being stored at 4, 8, 12, and 20°C were investigated. The growth parameters, lag-phase duration (LPD) and exponential growth rate (EGR), were determined by using a two-phase linear growth model as a primary model and a square root model for EGR and a quadratic model for LPD as secondary models, based on the growth data. The EGR model predictions were compared with growth rates obtained from the USDA Pathogen Modeling Program, calculated with similar pH, salt percentage, and NaNO2 parameters, at all storage temperatures. The results showed that L. monocytogenes grew well in all food types, with the growth rate increasing with storage temperature. Predicted EGRs for all food types demonstrated the significance of storage temperature and similar growth rates among four food types. The predicted EGRs showed slightly slower rate compared with the values from the U.S. Department of Agriculture Pathogen Modeling Program. LPD could not be accurately predicted, possibly because there were not enough sampling points. These data established by using real food samples demonstrated that L. monocytogenes can initiate growth without a prolonged lag phase even at refrigeration temperature (4°C), and the predictive models derived from this study can be useful for developing proper handling guidelines for thawed frozen foods during production and storage.


2013 ◽  
Vol 76 (11) ◽  
pp. 1963-1968 ◽  
Author(s):  
QIANWANG ZHENG ◽  
CAROLINE BUSTANDI ◽  
YISHAN YANG ◽  
KEITH R. SCHNEIDER ◽  
HYUN-GYUN YUK

This study was performed to optimize Salmonella Typhimurium recovery from raw duck wings with five nonselective broths (buffered peptone water, tryptic soy broth, lactose broth, universal preenrichment broth, nutrient broth) and four selective broths (selenite broth, BAX System MP media [MP], Salmonella AD media [AD], ONE broth-Salmonella [OB]). Healthy or heat-injured (50 and 85% injury) cells were inoculated at a level of 102, 101, or 100 CFU/25 g on raw duck wings. Growth was modeled using DMfit with four growth parameters: lag-phase duration, maximum growth rate, doubling time, and maximum population density. Most enrichments were able to recover Salmonella Typhimurium to greater than 6 log CFU/ml. AD, MP, and OB had significantly (P < 0.05) higher maximum growth rate (0.9 to 1.0/h) and lower doubling time (0.7 to 0.8 h). Buffered peptone water, AD, MP, and OB recovered healthy and 50%-injured cells at low inoculum levels to more than 6.0 log CFU/ml; OB achieved the greatest recovery (7.6 and 7.9 log CFU/ml), following 24 h of incubation. The 85%-injured cells at 100 and 101 CFU/25 g, however, were only recovered in OB, reaching 7.3 and 7.5 log CFU/ml, respectively. These results suggest that OB may be an appropriate enrichment broth for the recovery of Salmonella Typhimurium from raw duck wings in standard diagnostic tests or other rapid detection methods, to avoid false-negative results.


2014 ◽  
Vol 32 (No. 4) ◽  
pp. 337-341 ◽  
Author(s):  
A. Medveďová ◽  
A. Studeničová ◽  
Ľ. Valík ◽  
Z. Horváthová

We investigated the prevalence of enterotoxigenic S. aureus in the Slovakian dairy products and compared the reliability of different routine methods of identification. Out of 64 isolates, 44% were confirmed as S. aureus. There was only a little correlation in the confirmation by API Staph, VIT-Staphylococcus, and PCR detection. The PCR results revealed that 32% of S. aureus isolates possessed the selected gene for SEs enterotoxins (SEA-SEE), with sea as the most predominant gene. Neither seb nor sed genes were found throughout the collection. Additionally, the growth analysis of the isolates was performed in milk at 15°C. The growth parameters were very close to one another and were also compared with the data described in the global databases. These results provided evidence that the growth rate and lag phase duration can be determined with a high degree of reproducibility without regardless of the strain origin.


2014 ◽  
Vol 8 (1) ◽  
pp. 1-5 ◽  
Author(s):  
Amenan A. Soro-Yao ◽  
Solange Aka ◽  
Philippe Thonart ◽  
Koffi M. Djè

The kinetic growth parameters [maximal specific growth rate μm (h-1), and generation time g (h)] and viability after stress treatments (dehydration with glycerol solution of increasing concentration, freezing or heating stress) of four lactic acid bacteria [Lactobacillus plantarum (LP), L. fermentum (LF), Leuconostoc spp. (M1) and Lactococcus spp. (M2)] were determined. The maximal specific growth rate (μm) and generation time g ranged between 0.51 h-1 to 0.14 h-1 and 0.61 h to 1.33 h, respectively. We observed that the strains were sensitive to a change in water activity (aw 0.32 final), storage and incubation temperatures. The Strain LF obtained a higher cell concentration and viability, as well as a lower g compared to those obtained by the other strains. The kinetic growth parameters (μm, g) together with viability after stress treatments could be used for the screening of dried lactic acid starter cultures.


1999 ◽  
Vol 17 (1) ◽  
pp. 49-52 ◽  
Author(s):  
Robert H. Stamps ◽  
Michael R. Evans

Abstract A comparison was made of Canadian sphagnum peat (SP) and Philippine coconut (Cocos nucifera L.) coir dust (CD) as growing media components for greenhouse production of Dracaena marginata Bak. and Spathiphyllum Schott ‘Petite’. Three soilless foliage plant growing mixes (Cornell, Hybrid, University of Florida #2 [UF-2]) were prepared using either SP or CD and pine bark (PB), vermiculite (V), and/or perlite (P) in the following ratios (% by vol): Cornell = 50 CD or SP:25 V:25 P, Hybrid = 40 CD or SP:30 V:30 PB, UF-2 = 50 CD or SP: 50 PB. Dracaena root growth was not affected by treatments but there were significant mix × media component interactions that affected plant top growth parameters. In general, the growth and quality of D. marginata were reduced by using CD in Cornell, had no effect in Hybrid, and increased in UF-2. S. ‘Petite’ grew equally well in all growing mixes regardless of whether CD or SP was used; however, plants grew more in Cornell and Hybrid than in UF-2. S. ‘Petite’ roots, which were infested with Cylindrocladium spathiphylli, had higher grades when grown in CD than when the media contained SP.


Agrologia ◽  
2018 ◽  
Vol 1 (1) ◽  
Author(s):  
S. Tuhuteru ◽  
Meity L Hehanussa ◽  
Simon H.T Raharjo

Dendrobium anosmum is one of natural orchids in Indonesia. Optimization of medium composition for orchid propagation through in vitro culture is necessary to enhance propagule multiplication capabilities and quality. This study was aimed to study the influence of concentration of coconut water in culture medium on in vitro growth and development of D. anosmum orchid species and to determine the optimal coconut water concentration in culture media.  The experiment were arranged in a Completely Randomized Design with four treatments and eight replications. The treatments consisted of the addition of coconut water with concentrations: 0 ml•l -1 (control), 50 ml•l-1, 100 ml•l-1 and 150 ml•l-1. The results showed that addition of coconut water in culture medium gave different effect on shoot growth and multiplication of D. anosmum orchids.  Coconut water concentration of 100 ml•l-1 was the best concentration for growth and multiplication of D. anosmum orchids, based on both shoots and roots growth, plantlet height and wet weight.


2008 ◽  
Vol 25 (No. 5) ◽  
pp. 272-282 ◽  
Author(s):  
D. Liptáková ◽  
Ľ. Valík ◽  
A. Lauková ◽  
V. Strompfová

The combined effect of initial amount of 18 h <i>L. rhamnosus</i> VT1 inoculum and incubation temperature on the growth of <i>Candida maltosa</i> YP1, an oxidative food spoilage yeast strain, was primarily modelled and studied by standard response surface methodology. This study resulted in the following linear regression equations characterising lag time and growth rate of <i>C. maltosa</i> YP1 in milk in competition with the potentially protective lactobacillus strain. Lag-phase of <i>C. maltosa</i> was strongly influenced by the amount of lactobacillus inoculum (<i>V</i><sub>0</sub>) and incubation temperature (1/<i>T</i>). The synergic effect of both these factors was also evident as results from the equation lag = –33.50 + 186.38 × <i>V</i><sub>0</sub> × 1/<i>T</i> + 512.27 × 1/<i>T</i> – 5.511 × <i>V</i><sub>0</sub> (<i>R</i><sup>2</sup><sub>(λ)</sub> = 0.849). The growth rate was sufficiently described by the linear relation: <i>Gr</i><sub>Cm</sub> = –0.00046 + 0.0033 × <i>T</i> – 0.0016 × <i>V</i><sub>0 (<i>R</i><sup>2</sup><sub>(Gr)</sub> = 0.847). On the basis of these equations, the mutual microbial interactions and the potential application of the lactobacillus strains to food protection are discussed.


2021 ◽  
Vol 13 (9) ◽  
pp. 5074
Author(s):  
Urooj Kanwal ◽  
Muhammad Ibrahim ◽  
Farhat Abbas ◽  
Muhammad Yamin ◽  
Fariha Jabeen ◽  
...  

Phytoremediation is a cost-effective and environmentally friendly approach that can be used for the remediation of metals in polluted soil. This study used a hedge plant–calico (Alternanthera bettzickiana (Regel) G. Nicholson) to determine the role of citric acid in lead (Pb) phytoremediation by exposing it to different concentrations of Pb (0, 200, 500, and 1000 mg kg−1) as well as in a combination with citric acid concentration (0, 250, 500 µM). The analysis of variance was applied on results for significant effects of the independent variables on the dependent variables using SPSS (ver10). According to the results, maximum Pb concentration was measured in the upper parts of the plant. An increase in dry weight biomass, plant growth parameters, and photosynthetic contents was observed with the increase of Pb application (200 mg kg−1) in soil while a reduced growth was experienced at higher Pb concentration (1000 mg kg−1). The antioxidant enzymatic activities like superoxide dismutase (SOD) and peroxidase (POD) were enhanced under lower Pb concentration (200, 500 mg kg−1), whereas the reduction occurred at greater metal concentration Pb (1000 mg kg−1). There was a usual reduction in electrolyte leakage (EL) at lower Pb concentration (200, 500 mg kg−1), whereas EL increased at maximum Pb concentration (1000 mg kg−1). We concluded that this hedge plant, A. Bettzickiana, has the greater ability to remediate polluted soils aided with citric acid application.


2009 ◽  
Vol 417-418 ◽  
pp. 313-316 ◽  
Author(s):  
Hyun Kyu Jun ◽  
Won Hee You

Rolling contact fatigue initiated defects such as surface corrugation, head check, squat, are one of growing problems in high speed railway line. A squat is generally developed below the rail surface and grows parallel to surface until it turns down into rail. Estimation of critical crack size and crack growth rate is an essential to prevent rail from failure and develop cost effective railway maintenance strategy. In this study, we predict crack growth rate of a rail with a squat defect. For this purpose, a rail model with a squat defect is developed. Timoshenko’s beam theory is applied to calculate the global bending stress at the crack tip and Hertzian contact model is applied to calculate the local contact stresses at the surface of rail by simulating rolling over a railway wheel on a rail. Stress intensity factors are calculated from the total stress at the crack tip. Fatigue crack growth curve of 60kg rail steel is applied to calculated crack growth rate. Software to predict crack growth life through whole life cycle is developed. We expect that we can make a more cost effective rail maintenance strategy by considering the crack growth analysis for a defective rail.


2008 ◽  
Vol 1 (3) ◽  
pp. 333-340 ◽  
Author(s):  
H. Abbas ◽  
R. Zablotowicz ◽  
H. Bruns

To successfully exploit biological control it is desirable to understand how the introduced agent colonises the host and interferes with establishment of the pest. This study assessed field colonisation of maize by Aspergillus flavus strains as biological control agents to reduce aflatoxin contamination. Maize (corn, Zea mays L.) ears were inoculated with A. flavus using a pin-bar technique in 2004 and 2005. Non-aflatoxigenic strains K49 (NRRL 30797) & CT3 (NRRL 30798) and toxigenic F3W4 (NRRL 30798) were compared against a carrier control (0.2% aqueous Tween 20). Ten ears were sampled over 12 to 20 days, visually assessed, and curves fit to a three compartment Gompertz equation or other best appropriate regressions. Aflatoxin was determined by HPLC and cyclopiazonic acid (CPA) by LC/MS. The Gompertz model describes growth parameters, e.g. growth constant, lag phase and maximum colonisation characterised patterns of maize colonisation for most inoculated treatments. Aflatoxin accumulation in maize inoculated with F3W4 was about 35,000 ng/g in 2004 and 2005, with kinetics of aflatoxin accumulation in 2005 well described by the Gompertz equation. Less than 200 ng/g was observed in maize inoculated with strains CT3 & K49 and accumulation was described by a linear or logistic model. Maize inoculated with strains CT3 and F3W4 accumulated a maximum of 220 and 169 µg/kg CPA, respectively, compared to 22 and 0.2 µg/kg in the control and K49 inoculated, respectively. This technique can be used to elucidate colonisation potential of non-toxigenic A. flavus in maize in relation to biological control of aflatoxin. The greatest reduction of aflatoxin and CPA in maize inoculated with strain K49 and Gompertz parameters on colonisation indicates its superiority to CT3 as a biological control agent. The dynamics of maize colonisation by A. flavus strains and subsequent mycotoxin accumulation generated by using the pin-bar technique has implications for characterising the competence of biocontrol strains for reducing aflatoxin contamination.


Sign in / Sign up

Export Citation Format

Share Document