scholarly journals Mechanical test of granite with multiple water–thermal cycles

2021 ◽  
Vol 9 (1) ◽  
Author(s):  
Li Yu ◽  
Hai-Wang Peng ◽  
Yu Zhang ◽  
Guo-wei Li

AbstractTo study the influence of thermal shock caused by water-cooling on the physical and mechanical properties of high-temperature granite, granite was subjected to an increasing number of high-temperature (300 °C) water-cooling and thermal shock treatment cycles, and static mechanical experiments were carried out on the treated granite. The results support the following conclusions: (1) thermal shock causes an increase in the number and size of the pores and cracks within the granite; thus, its volume expands, density decreases, water absorption rate increases, and P-wave velocity decreases. (2) With an increase in the number of thermal shocks, both the compressive strength and tensile strength of the granite decrease, and there is a linear relationship between the compressive strength and tensile strength. (3) With an increase in the number of thermal shocks, the plasticity of the granite increases and its resistance to deformation weakens, which is manifested as a decrease in both the compressive modulus and tensile modulus of the granite. After 15 cycles of thermal shock, the compressive elastic modulus and tensile modulus of the granite decreased by 25.18% and 46.76%, respectively. (4) The m and s values of the damaged granite were calculated based on the Hoek–Brown empirical criterion, and it was found that both of these parameters decrease with the increase in the number of thermal shocks. The calculation results can provide a reference for engineering rock mass failure.

2020 ◽  
Author(s):  
Li Yu ◽  
Hai-wang PENG ◽  
Yu Zhang ◽  
GuoWei Li

Abstract To study the influence of thermal shock caused by water cooling on the physical and mechanical properties of high-temperature granite, granite was subjected to an increasing number of high-temperature (300℃) water-cooling and thermal shock treatment cycles, and static mechanical experiments were carried out on the treated granite. The results support the following conclusions: (1) Thermal shock causes an increase in the number and size of the pores and cracks within the granite; thus, its volume expands, density decreases, water absorption rate increases, and P-wave velocity decreases. (2) With an increase in the number of thermal shocks, both the compressive strength and tensile strength of the granite decrease, and there is a linear relationship between the compressive strength and tensile strength. With the corresponding fitting formula, the change in the strength of the granite can be accurately predicted. (3) With an increase in the number of thermal shocks, the plasticity of the granite increases and its resistance to deformation weakens, which is manifested as a decrease in both the compressive modulus and tensile modulus of the granite. After 15 cycles of thermal shock, the compressive elastic modulus and tensile modulus of the granite decreased by 25.18% and 46.76%, respectively. (4) The m and s values of the damaged granite were calculated based on the Hoek-Brown empirical criterion, and it was found that both of these parameters decrease with the increase in the number of thermal shocks. The calculation results can provide a reference for engineering rock mass failure.Clinical trial registration


Author(s):  
Haopeng Jiang ◽  
Annan Jiang ◽  
Fengrui Zhang

Experimental tests were conducted to study the influence of natural cooling and water cooling on the physical and mechanical properties of quartz sandstone. This study aims to understand the effect of different cooling methods on the physical and mechanical properties of quartz sandstone (such as mass, volume, density, P-wave velocity, elastic modulus, uniaxial compressive strength, etc.). The results show that the uniaxial compressive strength (UCS) and elastic modulus(E) of the specimens cooled by natural-cooling and water-cooling decrease with heating temperature. At 800℃, after natural cooling and water cooling, the average value of UCS decreased by 34.65% and 57.90%, and the average value of E decreased by 87.66% and 89.05%, respectively. Meanwhile, scanning electron microscope (SEM) images were used to capture the development of microcracks and pores within the specimens after natural-cooling and water-cooling, and it was found that at the same temperature, water cooling treatment was more likely to cause microcracks and pores, which can cause more serious damage to the quartz sandstone. These results confirm that different cooling methods have different effects on the physical and mechanical properties of quartz sandstone, and provide a basis for the stability prediction of rock mass engineering such as tunnel suffering from fire.


Minerals ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 779
Author(s):  
Mohamed Gomah ◽  
Guichen Li ◽  
Salah Bader ◽  
Mohamed Elkarmoty ◽  
Mohamed Ismael

The awareness of the impact of high temperatures on rock properties is essential to the design of deep geotechnical applications. The purpose of this research is to assess the influence of heating and cooling treatments on the physical and mechanical properties of Egyptian granodiorite as a degrading factor. The samples were heated to various temperatures (200, 400, 600, and 800 °C) and then cooled at different rates, either slowly cooled in the oven and air or quickly cooled in water. The porosity, water absorption, P-wave velocity, tensile strength, failure mode, and associated microstructural alterations due to thermal effect have been studied. The study revealed that the granodiorite has a slight drop in tensile strength, up to 400 °C, for slow cooling routes and that most of the physical attributes are comparable to natural rock. Despite this, granodiorite thermal deterioration is substantially higher for quick cooling than for slow cooling. Between 400:600 °C is ‘the transitional stage’, where the physical and mechanical characteristics degraded exponentially for all cooling pathways. Independent of the cooling method, the granodiorite showed a ductile failure mode associated with reduced peak tensile strengths. Additionally, the microstructure altered from predominantly intergranular cracking to more trans-granular cracking at 600 °C. The integrity of the granodiorite structure was compromised at 800 °C, the physical parameters deteriorated, and the rock tensile strength was negligible. In this research, the temperatures of 400, 600, and 800 °C were remarked to be typical of three divergent phases of granodiorite mechanical and physical properties evolution. Furthermore, 400 °C could be considered as the threshold limit for Egyptian granodiorite physical and mechanical properties for typical thermal underground applications.


2021 ◽  
Vol 904 ◽  
pp. 188-195
Author(s):  
Hua Qiong Wang ◽  
Li Li Zhang ◽  
Da Cheng Jiao ◽  
Yan Ru Wang ◽  
Zeng Hua Gao

The tensile properties of quartz fiber fabric-reinforced resin composites at high temperature were studied. The effects of specimen type and dimension, temperature loading procedure, holding time and loading rate on the tensile properties of the composites at high temperatures were analyzed through series of comparative experiments, the tensile test parameters were determined. Chinese national standard for high-temperature tensile property testing of the composites was compiled based on the data collected. According to the established standard, the tensile testing at 500°C was carried out. Compared with the tensile properties at room temperature, the tensile strength and tensile modulus of the composite at high temperature decreases significantly, with the tensile strength decreasing by about 42.32% and the tensile modulus decreasing by about 24.18%. This is mainly due to the high temperature which causes part of the resin matrix to pyrolyze and detach from around the fiber, thus losing the integrity of the material. In addition, this national standard for high-temperature tensile properties has some general applicability to different types of fiber-reinforced resin composites.


1989 ◽  
Vol 4 (6) ◽  
pp. 1339-1346 ◽  
Author(s):  
C. T. Ho ◽  
D. D. L. Chung

Unidirectional and continuous carbon fiber tin-matrix composites were used for the packaging of the high-temperature superconductor YBa2Cu3O7–δ by diffusion bonding at 170 °C and 500 psi. Tin served as the adhesive and to increase the ductility, the normal-state electrical conductivity, and the thermal conductivity. Carbon fibers served to increase the strength and the modulus, both in tension along the fiber direction and in compression perpendicular to the fiber layers, though they decreased the strength in compression along the fiber direction. Carbon fibers also served to increase the thermal conductivity and the thermal fatigue resistance. At 24 vol. % fibers, the tensile strength was approximately equal to the compressive strength perpendicular to the fiber layers. With further increase of the fiber content, the tensile strength exceeded the compressive strength perpendicular to the fiber layers, reaching 134 MPa at 31 vol. % fibers. For fiber contents less than 30 vol. %, the compressive ductility perpendicular to the fiber layers exceeded that of the plain superconductor. At 30 vol. % fibers, the tensile modulus reached 15 GPa at room temperature and 27 GPa at 77 K. The tensile load was essentially sustained by the carbon fibers and the superconducting behavior was maintained after tension almost to the point of tensile fracture. Neither Tc nor Jc was affected by the composite processing.


2020 ◽  
Vol 10 (12) ◽  
pp. 4201
Author(s):  
Anna Rudawska ◽  
Radovan Madleňák ◽  
Lucia Madleňáková ◽  
Paweł Droździel

This paper aims to present the effect of specific operational factors (temperature and humidity) on the selected mechanical properties of a conveyor belt. The tests were conducted in a climatic chamber, simulating the effect of both minus and plus temperatures −30 °C to 80 °C (243 K to 353 K) at specific humidity, and in a thermal shock chamber where a varying number of ageing cycles was applied for a specific range of thermal shocks. Six different tests in the climatic chamber and four different tests in a thermal shock chamber were conducted. The results of the climatic chamber tests demonstrate that many strength parameters have undesired values at a temperature of 10 °C (283 K) and 80 °C (353 K) at a relative humidity of 80%. Interestingly, the results revealed that tensile strength, tensile modulus and yield strength are higher at below 0 °C temperature than at above 0 °C temperature. For example, comparing the temperature −30 °C (243 K) and +30 °C (303 K) obtained a difference of tensile modulus of nearly 10%, and comparing the temperature −30 °C (243 K) and +10 °C (283 K) the differences were 22%.


1988 ◽  
Vol 134 ◽  
Author(s):  
Satish Kumar ◽  
T. E. Helminiak

ABSTRACTSignificant research efforts have been carried out to improve the tensile modulus and tensile strength of high performance carbon and polymeric fibers. Experimental polymeric fibers (ordered polymer fibers) have been prepared with moduli >50 MPSI and tensile strength approaching one MPSI. However, the benefits of the above improvements in tensile properties for aerospace applications are limited because composites of these fibers have low axial compressive strength, which is a direct result of the poor axial fiber compressive strength. The poor axial fiber compressive strength has usually been attributed to the microfibrillar/fibrillar buckling. However, questions concerning the intrinsic limitations at the molecular level and the effects of intermolecular interactions are also considered important. Better understanding of these aspects will help in determining the theoretically achievable compressive strength and may aid in the development of higher compressive strength high performance fibers. These and other issues related to the compressive strength of high performance polymeric and carbon fibers are discussed in this paper.


2013 ◽  
Vol 10 (4) ◽  
pp. 359-366 ◽  
Author(s):  
B. Adebayo ◽  
B. Adetula

This work deals with the investigation of physical and mechanical properties of selected rocks for condition of drilling categorization. Rock samples collected from five drilling locations were tested in the laboratory for uniaxial compressive strength, tensile strength, and Drilling Rate Index (DRI) using 1,100 kN compression machine, point load tester and miniature drill. Similarly, hardness, brittleness, Rock Abrasivity Index (RAI), penetration rate and bit wear rate were determined. The results showed that uniaxial compressive strength, tensile strength and Drilling Rate Index varied from 47.78 - 111.11 MPa, 8.09 - 19.44 MPa, and 20 - 52 respectively. The Nast point system chart was used to classify the rocks into drilling conditions. The drilling classification shows that the drilling condition of the rocks varied from slow to fast. The drillability characteristics of the rocks vary from extremely low to medium as specified by the Drilling rate Index (DRI). It was concluded that uniaxial compressive strength, texture and grain size, drilling rate index and Equivalent Quartz Content (EQC) are important parameters affecting drilling condition of the rocks.


2021 ◽  
Vol 2 (3) ◽  
pp. 23-31
Author(s):  
Mohammad Taghi Hamzaban

Different major factors control the strength of solid rocks. Moisture content is one of the most important factors, which can change the physical and mechanical behavior of intact rock as well as rock mass. Several early studies have shown that rock is weaker if tested wet rather than dry. In this paper, the density, P-wave velocity, uniaxial compressive strength, Brazilian tensile strength, and modulus of elasticity of seven different intact rock samples were measured under both dry and saturated conditions. The porosity of the samples was reported as well. Based on the obtained results, some correlations were proposed for estimating the saturated physical and mechanical properties from dry ones. The proposed correlations include different rock types and are more general than the previously reported ones. Comparing the obtained results showed that the mechanical and physical properties of weaker samples are more sensitive to the saturation process. Moreover, among the different mechanical parameters, Brazilian tensile strength exhibited more sensitivity to saturation. Comparing the results with the calculated porosities revealed that porosity is one of the key factors in the effect of saturation on physical and mechanical parameters. It seems that in the more porous rock samples, greater changes in the different measured parameters occur after saturation.


Sign in / Sign up

Export Citation Format

Share Document