scholarly journals Antisense noncoding mitochondrial RNA-2 gives rise to miR-4485-3p by Dicer processing in vitro

2021 ◽  
Vol 54 (1) ◽  
Author(s):  
Nicole Farfán ◽  
Nicole Sanhueza ◽  
Macarena Briones ◽  
Luis O. Burzio ◽  
Verónica A. Burzio

Abstract Background The antisense noncoding mitochondrial RNAs (ASncmtRNAs) derive from the mitochondrial 16S gene. Knockdown of these transcripts with chemically-modified antisense oligonucleotides induces proliferative arrest, apoptosis and invasiveness reduction in tumor but not normal cells. One of these transcripts, ASncmtRNA-2, contains the complete and identical sequence of hsa-miR-4485-3p and, upon knockdown of this transcript, there is a strong increase in levels of this miRNA, suggesting ASncmtRNA-2 as a source for miR-4485-3p, which is supported by several evidences from our group and others, in the ex vivo setting. Results Here we show that incubation of in vitro-transcribed ASncmtRNA-2 with recombinant Dicer produces RNA fragments corresponding to hsa-miR-4485-3p, showing that Dicer binds to and processes ASncmtRNA-2, strongly supporting the hypothesis that ASncmtRNA-2 acts as a precursor for miR-4485-3p. Conclusion The in vitro results presented here strengthen the hypothesis that miR-4485-3p is derived from ASncmtRNA-2 by Dicer processing. Since miR-4485-3p is classified as a tumor suppressor miRNA, this evidence strengthens the application of ASncmtRNA knockdown for cancer therapy.

Pharmaceutics ◽  
2021 ◽  
Vol 13 (6) ◽  
pp. 817
Author(s):  
Tsuyoshi Yamamoto ◽  
Yahiro Mukai ◽  
Fumito Wada ◽  
Chisato Terada ◽  
Yukina Kayaba ◽  
...  

The development of clinically relevant anti-microRNA antisense oligonucleotides (anti-miRNA ASOs) remains a major challenge. One promising configuration of anti-miRNA ASOs called “tiny LNA (tiny Locked Nucleic Acid)” is an unusually small (~8-mer), highly chemically modified anti-miRNA ASO with high activity and specificity. Within this platform, we achieved a great enhancement of the in vivo activity of miRNA-122-targeting tiny LNA by developing a series of N-acetylgalactosamine (GalNAc)-conjugated tiny LNAs. Specifically, the median effective dose (ED50) of the most potent construct, tL-5G3, was estimated to be ~12 nmol/kg, which is ~300–500 times more potent than the original unconjugated tiny LNA. Through in vivo/ex vivo imaging studies, we have confirmed that the major advantage of GalNAc over tiny LNAs can be ascribed to the improvement of their originally poor pharmacokinetics. We also showed that the GalNAc ligand should be introduced into its 5′ terminus rather than its 3′ end via a biolabile phosphodiester bond. This result suggests that tiny LNA can unexpectedly be recognized by endogenous nucleases and is required to be digested to liberate the parent tiny LNA at an appropriate time in the body. We believe that our strategy will pave the way for the clinical application of miRNA-targeting small ASO therapy.


eLife ◽  
2021 ◽  
Vol 10 ◽  
Author(s):  
Jessica SY Ho ◽  
Federico Di Tullio ◽  
Megan Schwarz ◽  
Diana Low ◽  
Danny Incarnato ◽  
...  

High spliceosome activity is a dependency for cancer cells, making them more vulnerable to perturbation of the splicing machinery compared to normal cells. To identify splicing factors important for prostate cancer (PCa) fitness, we performed pooled shRNA screens in vitro and in vivo. Our screens identified HNRNPM as a regulator of PCa cell growth. RNA- and eCLIP-sequencing identified HNRNPM binding to transcripts of key homeostatic genes. HNRNPM binding to its targets prevents aberrant exon inclusion and back-splicing events. In both linear and circular mis-spliced transcripts, HNRNPM preferentially binds to GU-rich elements in long flanking proximal introns. Mimicry of HNRNPM dependent linear splicing events using splice-switching-antisense-oligonucleotides (SSOs) was sufficient to inhibit PCa cell growth. This suggests that PCa dependence on HNRNPM is likely a result of mis-splicing of key homeostatic coding and non-coding genes. Our results have further been confirmed in other solid tumors. Taken together, our data reveal a role for HNRNPM in supporting cancer cell fitness. Inhibition of HNRNPM activity is therefore a potential therapeutic strategy in suppressing growth of PCa and other solid tumors.


Circulation ◽  
2000 ◽  
Vol 102 (suppl_3) ◽  
Author(s):  
Douglas N. Miniati ◽  
E. Grant Hoyt ◽  
Brian T. Feeley ◽  
Robert S. Poston ◽  
Robert C. Robbins

Background —The long-term success of cardiac transplantation is limited by graft coronary artery disease (GCAD). Antisense oligonucleotides (ASs) to proliferating cell nuclear antigen (PCNA) and Cdc2 kinase (Cdc2 k) can arrest cell cycle progression and inhibit neointimal hyperplasia. Transforming growth factor-β 1 (TGF-β 1 ) has been implicated in vascular smooth muscle cell (VSMC) activation. The role of TGF-β 1 in GCAD remains unclear. We hypothesized that ASs to PCNA and Cdc2 k would inhibit VSMC proliferation and GCAD. Methods and Results —In vitro VSMC proliferation was determined after pretreatment with AS solution or medium alone followed by angiotensin II stimulation. PVG-to-ACI rat heterotopic cardiac transplantation procedures were performed after ex vivo pressure-mediated transfection of ASs to PCNA and Cdc2k or saline alone. At postoperative days 30, 60, and 90, allografts were assessed for GCAD, percent neointimal macrophages and VSMCs, and TGF-β 1 activity. AS pretreatment significantly attenuated VSMC proliferation. At postoperative day 90, percent affected arteries, percent occlusion, and intima-media ratio demonstrated severe GCAD in saline-treated allografts, whereas these parameters were significantly lower in AS-treated allografts. Percent neointimal macrophages and VSMCs was reduced in AS-treated allografts. TGF-β 1 activity was increased in saline compared with AS-treated allografts and nontransplanted heart controls. Conclusions —ASs to PCNA and Cdc2 k inhibit VSMC proliferation in vitro and reduce GCAD, percent neointimal VSMCs and macrophages, and TGF-β 1 activity in vivo. TGF-β 1 may play a “response to injury” role in the development of GCAD. The prevention of GCAD via AS inhibition of cell cycle regulatory genes before reperfusion may offer a useful clinical alternative to current therapeutic strategies.


Biomedicines ◽  
2021 ◽  
Vol 9 (7) ◽  
pp. 802
Author(s):  
Shamil Akhmedov ◽  
Sergey Afanasyev ◽  
Marina Trusova ◽  
Pavel Postnikov ◽  
Yulia Rogovskaya ◽  
...  

Atherosclerosis, a systematic degenerative disease related to the buildup of plaques in human vessels, remains the major cause of morbidity in the field of cardiovascular health problems, which are the number one cause of death globally. Novel atheroprotective HDL-mimicking chemically modified carbon-coated iron nanoparticles (Fe@C NPs) were produced by gas-phase synthesis and modified with organic functional groups of a lipophilic nature. Modified and non-modified Fe@C NPs, immobilized with polycaprolactone on stainless steel, showed high cytocompatibility in human endothelial cell culture. Furthermore, after ex vivo treatment of native atherosclerotic plaques obtained during open carotid endarterectomy surgery, Fe@C NPs penetrated the inner structures and caused structural changes of atherosclerotic plaques, depending on the period of implantation in Wistar rats, serving as a natural bioreactor. The high biocompatibility of the Fe@C NPs shows great potential in the treatment of atherosclerosis disease as an active substance of stent coatings to prevent restenosis and the formation of atherosclerotic plaques.


2019 ◽  
Vol 21 (1) ◽  
pp. 59-68
Author(s):  
I. O. Chikileva ◽  
I. Zh. Shubina ◽  
I. V. Samoylenko ◽  
A. V. Karaulov ◽  
M. V. Kiselevsky

Inhibitory receptors CTLA-4 and PD-1 (immune checkpoints) play a key role in regulation of immune reactions. They suppress excessive immune response against pathogenic microbes and prevent autoimmune reactions. The immune checkpoints are targets of the modern effective therapy based on human and humanized monoclonal antibodies (ipilimumab and nivolumab, tremelimumab, pembrolizumab, etc). However, despite its high efficiency compared to standard chemotherapy, the therapy based on blocking immune check points is facing several problems, i.e., high therapy cost and severe negative autoimmune-related side effects. Unfortunately, this therapy helps to minority of the patients. Hence, further studies are required to improve its efficiency and safety, as well as to search for selection criteria of the patients who would benefit from the therapy. An appealing approach to reduce negative side effects from immune checkpoint inhibition is application of the blocking antibodies, aiming for ex vivo generation of patients’ activated immune cells for cancer therapy, thus avoiding systemic drug administration. Our aim was to elucidate influence of immune checkpoint blocking antibodies on the expression of CTLA-4 and PD-1 in such an in vitro model. First of all, we have determined quantities of lymphocyte receptors in peripheral blood of healthy volunteers, or cancer patients with disseminated melanoma. Moreover, we defined effect from the addition of antibodies against immune checkpoints on proportions of cells expressing CTLA-4 and PD-1 in the population of phytohemagglutininactivated lymphocytes. Our study demonstrated that, in presence of antibodies to either of the two checkpoints during in vitro cell activation, the blockade of specific target receptor is accompanied by reduced number of cells positive for another checkpoint. Hence, the antibodies directed against PD-1 or CTLA-4 seem to suppress both negative signal cascades at once, if tested under such experimental conditions. Noteworthy, the response to blocking antibodies for different immune checkpoints varied for different donors. Our data may be used for development of effective combinations of lymphocyte activators and immune check-point inhibitors, for in vitro generation of activated lymphocytes applied for adoptive cancer therapy, as well as for prediction of possible responses to antibodies against CTLA-4 or PD-1, aiming to select the best personalized cancer immunotherapy.


Author(s):  
M. Kraemer ◽  
J. Foucrier ◽  
J. Vassy ◽  
M.T. Chalumeau

Some authors using immunofluorescent techniques had already suggested that some hepatocytes are able to synthetize several plasma proteins. In vitro studies on normal cells or on cells issued of murine hepatomas raise the same conclusion. These works could be indications of an hepatocyte functionnal non-specialization, meanwhile the authors never give direct topographic proofs suitable with this hypothesis.The use of immunoenzymatic techniques after obtention of monospecific antisera had seemed to us useful to bring forward a better knowledge of this problem. We have studied three carrier proteins (transferrin = Tf, hemopexin = Hx, albumin = Alb) operating at different levels in iron metabolism by demonstrating and localizing the adult rat hepatocytes involved in their synthesis.Immunological, histological and ultrastructural methods have been described in a previous work.


VASA ◽  
2005 ◽  
Vol 34 (1) ◽  
pp. 11-17 ◽  
Author(s):  
Brunner-La Rocca ◽  
Schindler ◽  
Schlumpf ◽  
Saller ◽  
Suter

Background: Previous studies showed an anti-atherosclerotic effect of PADMA 28, an herbal formula based on Tibetan medicine. As the mechanisms of action are not fully understood, we investigated whether PADMA 28 may lower blood lipids and lipid oxidisability, and affect early endothelial dysfunction. Patients and methods: Sixty otherwise healthy subjects with total cholesterol ≥5.2 mmol/l and < 8.0 mmol/l were randomly assigned to placebo or PADMA 28, 3 x 2 capsules daily, for 4 weeks (double-blind). Blood lipids (total, LDL-, and HDL-cholesterol, triglycerides, Apo-lipoprotein A1 and B) and ex vivo lipid oxidisability were measured before and after treatment. In a subset of 24 subjects, endothelial function was assessed using venous occlusion plethysmography with intraarterial infusion of acetylcholine. Isolated LDL and plasma both untreated and pre-treated with PADMA 28 extract were oxidised by the radical generator AAPH. Conjugated diene formation was measured at 245 nm. Results: Blood lipids did not change during the study in both groups. In contrast to previous reports in mild hypercholesterolaemia, no endothelial dysfunction was seen and, consequently, was not influenced by therapy. Ex vivo blood lipid oxidisability was significantly reduced with PADMA 28 (area under curve: 5.29 ± 1.62 to 4.99 ± 1.46, p = 0.01), and remained unchanged in the placebo group (5.33 ± 1.88 to 5.18 ± 1.78, p > 0.1). This effect persisted one week after cessation of medication. In vitro experiments confirmed the prevention of lipid peroxidation in the presence of PADMA 28 extracts. Persistent protection was also seen for LDL isolated from PADMA 28-pretreated blood after being subjected to rigorous purification. Conclusions: This study suggests that the inhibition of blood lipid oxidisability by PADMA 28 may play a role in its anti-atherosclerotic effect.


2012 ◽  
Vol 82 (3) ◽  
pp. 228-232 ◽  
Author(s):  
Mauro Serafini ◽  
Giuseppa Morabito

Dietary polyphenols have been shown to scavenge free radicals, modulating cellular redox transcription factors in different in vitro and ex vivo models. Dietary intervention studies have shown that consumption of plant foods modulates plasma Non-Enzymatic Antioxidant Capacity (NEAC), a biomarker of the endogenous antioxidant network, in human subjects. However, the identification of the molecules responsible for this effect are yet to be obtained and evidences of an antioxidant in vivo action of polyphenols are conflicting. There is a clear discrepancy between polyphenols (PP) concentration in body fluids and the extent of increase of plasma NEAC. The low degree of absorption and the extensive metabolism of PP within the body have raised questions about their contribution to the endogenous antioxidant network. This work will discuss the role of polyphenols from galenic preparation, food extracts, and selected dietary sources as modulators of plasma NEAC in humans.


Sign in / Sign up

Export Citation Format

Share Document