scholarly journals Evaluation of lambda-cyhalothrin oxidative stress and gonad histoarchitecture toxicity potency in Clarias gariepinus

2021 ◽  
Vol 82 (1) ◽  
Author(s):  
Samuel U. Ezenwosu ◽  
Emmanuel I. Nnamonu ◽  
Gregory Ejikeme Odo ◽  
Bright C. Ikele ◽  
Ogonna C. Ani

Abstract Background Extensive and indiscriminate use of pesticides gradually destroys the environment (ecosystem), poses serious threats to human health, animal life (especially aquatic), plant forms, soil, water, and also lead to emergence of resilient species of life forms that are becoming resistant to pesticides. The present study focused on evaluating lambda-cyhalothrin oxidative stress and gonad histoarchitecture toxicity potency in Clarias gariepinus. Results A total of 120 C. gariepinus 16 to 40 cm SL and 200 to 250 g bodyweights (assigned into treatments 0.00 (control), 2.5 × 10−4 μg/L, 5.0 × 10−4 μg/L, and 6.25×10−4 μg/L (A-D) lambda-cyhalothrin (LCT), each treatment consisted of 30 fishes, replicated three times, 10 fishes per replicate) were used for this study. On day 7, catalase activity (CAT) and glutathione peroxidase (GPx) significantly increased (p < 0.05) in all treatments compared with control. Day 14, superoxide dismutase (SOD) and GPx significantly increased (p < 0.05). All parameters significantly increased (p < 0.05) on days 21 and 28 except SOD (day 21). All parameters increased significantly on day 28 across the row in all treatments. The significant increase (p < 0.05) in SOD, (malondialdehyde) MDA, GPx, and glutathione reductase (GR) levels returned to normal after 7 days of depuration but CAT level did not return to normal. The testes photomicrographs showed necrotic conditions in the spermatogenic cells with nuclear pyknosis and cytoplasmic swelling while that of the ovary displayed vacuolations, flabby oocytes, and degenerated ovaries changes. Conclusion Lambda-cyhalothrin is toxic to C. gariepinus. The inability of significant increase in CAT to return to normal after 7 days of depuration further confirms our report.

Author(s):  
L. K. Parkhomenko ◽  
◽  
L. A. Strashok ◽  
S. I. Turchina ◽  
G. V. Kosovtsova ◽  
...  

Recently, interest in the problem of free radical oxidation in biological membranes, which is directly related to both the normal functioning of cells and the occurrence, course and outcome of many pathological conditions, has increased again in clinical medicine. The aim was to determine the role and impact of antioxidant defense in boys with hypoandrogenism. The study involved 75 adolescents with hypoandrogenism aged 13–18 years, who underwent a complex of clinical and laboratory examinations. All patients were conducted complex of anthropometric research and determination of the degree of delayed puberty, laboratory and instrumental examination. Free radical oxidation was determined by the levels of malondialdehyde, conjugated dienes, carbonated proteins, superoxide dismutase and catalase in the serum, and restored glutathione and glutathione peroxidase in whole blood. Based on their determination, the coefficient of oxidative stress was calculated. Statistical processing of results was performed using parametric and nonparametric methods. The study of indicators of the free radical oxidation process found that adolescents with hypoandrogenism have multidirectional changes in the oxidation of proteins and lipids, namely: the level of conjugated dienes increases, the concentration of malondialdehyde remains at the level of the control group, and the level of carbonated proteins tends to decrease. As for the activity of antioxidant protection enzymes, a significant decrease in the level of glutathione peroxidase was detected, while the level of superoxide dismutase and catalase remained at the level of normative indicators. Oxidative stress accompanies and is one of the pathogenetic links in the formation or maintenance of the state of hypoandrogenism in boys. This requires the use of antioxidants, the complex of which must be selected individually.


Zygote ◽  
2019 ◽  
Vol 27 (6) ◽  
pp. 432-435
Author(s):  
Thais Rose dos Santos Hamilton ◽  
Gabriela Esteves Duarte ◽  
José Antonio Visintin ◽  
Mayra Elena Ortiz D’Ávila Assumpção

SummaryLong-term heat stress (HS) induced by testicular insulation generates oxidative stress (OS) on the testicular environment; consequently activating antioxidant enzymes such as superoxide dismutase (SOD), glutathione reductase (GR) and glutathione peroxidase (GPx). The aim of this work was to immunolocalize antioxidant enzymes present in different cells within the seminiferous tubule when rams were submitted to HS. Rams were divided into control (n = 6) and treated group (n = 6), comprising rams subjected to testicular insulation for 240 h. After the testicular insulation period, rams were subjected to orchiectomy. Testicular fragments were submitted to immunohistochemistry for staining against SOD, GR and GPx enzymes. We observed immunolocalization of GPx in more cell types of the testis after HS and when compared with other enzymes. In conclusion, GPx is the main antioxidant enzyme identified in testicular cells in an attempt to maintain oxidative balance when HS occurs.


2003 ◽  
Vol 22 (6) ◽  
pp. 423-427 ◽  
Author(s):  
Mary Otsyula ◽  
Matthew S. King ◽  
Tonya G. Ketcham ◽  
Ruth A. Sanders ◽  
John B. Watkins

Two of the models used in current diabetes research include the hypergalactosemic rat and the hyperglucosemic, streptozotocin-induced diabetic rat. Few studies, however, have examined the concurrence of these two models regarding the effects of elevated hexoses on biomarkers of oxidative stress. This study compared the activities of superoxide dismutase, catalase, glutathione peroxidase, and glutathione reductase and the concentrations of glutathione, glutathione disulfide, and thiobarbituric acid reactants (as a measure of lipid peroxidation) in liver, kidney, and heart of Sprague-Dawley rats after 60 days of either a 50% galactose diet or insulin deficiency caused by streptozotocin injection. Most rats from both models developed bilateral cataracts. Blood glucose and glycosy-lated hemoglobin A1c concentrations were elevated in streptozotocin diabetic rats. Streptozotocin diabetic rats exhibited elevated activities of renal superoxide dismutase, cardiac catalase, and renal and cardiac glutathione peroxidase, as well as elevated hepatic lipid peroxidation. Insulin treatment of streptozotocin-induced diabetic rats normalized altered markers. In galactosemic rats, hepatic lipid peroxidation was increased whereas glutathione reductase activity was diminished. Glutathione levels in liver were decreased in diabetic rats but elevated in the galactosemic rats, whereas hepatic glutathione disulfide concentrations were decreased much more in diabetes than in galactosemia. Insulin treatment reversed/prevented all changes caused by streptozotocin-induced diabetes. Lack of concomitance in these data indicate that the 60-day galactose-fed rat is not experiencing the same oxidative stress as the streptozotocin diabetic rat, and that investigators must be cautious drawing conclusions regarding the concurrence of the effects of the two animal models on oxidative stress biomarkers.


CNS Spectrums ◽  
2017 ◽  
Vol 24 (03) ◽  
pp. 333-337 ◽  
Author(s):  
Maiara Zeni-Graiff ◽  
Adiel C. Rios ◽  
Pawan K. Maurya ◽  
Lucas B. Rizzo ◽  
Sumit Sethi ◽  
...  

IntroductionOxidative stress has been documented in chronic schizophrenia and in the first episode of psychosis, but there are very little data on oxidative stress prior to the disease onset.ObjectiveThis work aimed to compare serum levels of superoxide dismutase (SOD) and glutathione peroxidase (GPx) in young individuals at ultra-high risk (UHR) of developing psychosis with a comparison healthy control group (HC).MethodsThirteen UHR subjects and 29 age- and sex-matched healthy controls (HC) were enrolled in this study. Clinical assessment included the Comprehensive Assessment of At-Risk Mental States (CAARMS), the Semi-Structured Clinical Interview for DSM-IV Axis-I (SCID-I) or the Kiddie-SADS-Present and Lifetime Version (K-SADS-PL), and the Global Assessment of Functioning (GAF) scale. Activities of SOD and GPx were measured in serum by the spectrophotometric method using enzyme-linked immunosorbent assay kits.ResultsAfter adjusting for age and years of education, there was a significant lower activity of SOD and lower GPX activity in the UHR group compared to the healthy control group (rate ratio [RR]=0.330, 95% CI 0.187; 0.584, p&lt;0.001 and RR=0.509, 95% CI 0.323; 0.803, p=0.004, respectively). There were also positive correlations between GAF functioning scores and GPx and SOD activities.ConclusionOur results suggest that oxidative imbalances could be present prior to the onset of full-blown psychosis, including in at-risk stages. Future studies should replicate and expand these results.


2012 ◽  
Vol 59 (4) ◽  
Author(s):  
Joanna Katarzyna Strzelczyk ◽  
Tomasz Wielkoszyński ◽  
Łukasz Krakowczyk ◽  
Brygida Adamek ◽  
Marzena Zalewska-Ziob ◽  
...  

Oxidative stress is one of several factors which contribute to the development of colorectal carcinogenesis. The aim of the study was an assessment of the activity of antioxidant enzymes in tumour and corresponding normal distal mucosa in a group of patients with colorectal adenocarcinoma. Samples of tumour and corresponding normal mucosa were obtained during a resection of colorectal cancer from 47 patients aged between 26 and 82 years. The average distance of corresponding normal distal mucosa from the tumour was 4.49 cm. Activities of antioxidant enzymes: superoxide dismutase (SOD), glutathione reductase (GR), glutathione peroxidase (GPx), glutathione S-transferase (GST), and catalase (CAT) were measured in tissue homogenates. The patients were grouped according to the tumour stage (Duke's staging), grading, localization, and size of tumour, as well as age and sex. Statistical analysis was performed. The activity of SOD and GPx was considerably increased, while the activity of GST decreased significantly in tumour as compared with normal mucosa. GR activity in colorectal cancer was evidently higher in tumours of proximal location compared with the distal ones. The distance of corresponding normal distal mucosa from the tumour was analyzed and related to all assayed parameters. A decreased GST activity was observed in corresponding normal mucosa more than 5 cm distant from the tumour in patients with CD Duke's stage. The higher activity of superoxide dismutase and glutathione peroxidase in tumour compared to corresponding normal mucosa could indicate higher oxidative stress in colorectal adenocarcinoma cells.


Author(s):  
Mina Rasouli Mojez ◽  
Abbas Ali Gaeini ◽  
Siroos Choobineh ◽  
Mohsen Sheykhlouvand

Background: The present study determined whether 4 weeks of moderate aerobic exercise improves antioxidant capacity on the brain of rats against oxidative stress caused by radiofrequency electromagnetic radiation emitted from cell phones. Methods: Responses of malondialdehyde, catalase, glutathione peroxidase, and superoxide dismutase, as well as the number of hippocampal dead cells, were examined. Male Wistar rats (10–12 wk old) were randomly assigned to 1 of 4 groups (N = 8): (1) moderate aerobic exercise (EXE) (2 × 15–30 min at 1215 m/min speed with 5 min of active recovery between sets), (2) exposure to 900/1800 MHz radiofrequency electromagnetic waves 3 hours per day (RAD), (3) EXE + RAD, and (4) exposure to an experimental phone without battery. Results: Following the exposure, the number of the hippocampal dead cells was significantly higher in group RAD compared with groups EXE, EXE + RAD, and control group. Malondialdehyde concentration in group RAD was significantly higher than that of groups EXE, EXE + RAD, and control group. Also, the activity of catalase, glutathione peroxidase, and superoxide dismutase in groups EXE, EXE + RAD, and control group was significantly higher compared with those of the exposure group. Conclusion: This study demonstrated that moderate aerobic exercise enhances hippocampal antioxidant capacity against oxidative challenge in the form of radiofrequency electromagnetic waves.


2019 ◽  
Vol 2019 ◽  
pp. 1-9 ◽  
Author(s):  
Katarzyna Knapik ◽  
Karolina Sieroń ◽  
Ewa Wojtyna ◽  
Grzegorz Onik ◽  
Ewa Romuk ◽  
...  

Objective. The main aim of the study was an assessment of the influence of rapid weight loss on oxidative stress parameters in judokas differing in weight reduction value. Materials and Methods. The study included 30 judokas with an age range of 18-30 years (mean age: 22.4±3.40 years). Enzymatic and nonenzymatic antioxidative markers, lipid peroxidation markers, and total oxidative stress were assessed three times: one week before a competition (the first stage), after gaining the desired weight (the second stage), and one week after the competition (the third stage). Results. Between the first and the second stage, the concentration of lipid hydroperoxides (LPH) decreased significantly. The superoxide dismutase (SOD), copper- and zinc-containing superoxide dismutase (Cu,Zn-SOD), ceruloplasmin (CER), malondialdehyde (MDA), LPH, and total oxidative stress (TOS) concentrations were the lowest one week after the competition. Linear regression indicated that the emphases on increased weight reduction increased the activity of glutathione peroxidase (GPx), glutathione reductase (GR), glutathione S-transferase (GST), and protein sulfhydryl (PSH) between the first and the second stage of the study. Moderate weight reduction (2-5%) resulted in elevated levels of SOD, Mn-SOD, LPH, MDA, and TOS in comparison to low and high reductions. An opposite relation was observed in PSH. In judokas, the precompetitional weight reduction range was 0.44-6.10% (mean: 2.93%±1.76%) of the initial body weight. Concentrations of superoxide dismutase (SOD; p<.01), manganese-dependent superoxide dismutase (Mn-SOD; p<.001), and ceruloplasmin (CER; p<.05) decreased between the first and the third stage of the study as well between the second and third one. Before competitions, a decrease in lipid hydroperoxide (LPH; p<.01) concentration was observed. A reduction of malondialdehyde (MDA; p<.05), LPH (p<.01), and total oxidative stress (TOS; p<.05) levels between the first and the final stage occurred. The increase in weight reduction was linearly correlated with the rise of glutathione peroxidase (GPx; p<.05), glutathione reductase (GR; p<.05), glutathione S-transferase (GST; p<.05), and protein sulfhydryl (PSH; p<.05) concentrations between the first and the second stage of the study. Moderate weight reduction (2-5%) resulted in elevated levels of SOD (p<.05), Mn-SOD (p<.05), LPH (p<.05), MDA (p<.05), and TOS (p<.05) in comparison to low and high reductions. An opposite relation was observed in PSH (p<.005). Conclusions. The effect of weight reduction in judo athletes on prooxidative-antioxidative system diversity depends on the weight reduction value.


2020 ◽  
Vol 32 (2) ◽  
pp. 220
Author(s):  
E. Hicks ◽  
M. Mentler ◽  
B. D. Whitaker

Oxidative stress can have a negative effect on oocyte maturation during invitro production of pig embryos. Imbalance of reactive oxygen species and antioxidant levels can affect the progression of oocyte maturation up to the point of fertilization. Antioxidants are effective in maintaining more ideal reactive oxygen species levels, which help to protect oocytes from potential harmful effects of oxidative stress. Berries from the elder plant (Sambucus sp.) contain high levels of a broad spectrum of antioxidants. One of these antioxidants, cyanidin, when supplemented to maturation medium at 100μM concentrations, reduces reactive oxygen species formation and improves IVF and early embryonic development in pigs. However, changes in the enzyme mechanisms of action during oocyte maturation due to cyanidin supplementation are unknown. Therefore, the objective of this study was to characterise the intracellular oocyte enzyme mechanisms between oocytes supplemented with 100μM cyanidin during 40 to 44h of maturation (n=600) and oocytes without supplementation of cyanidin during maturation (n=558). At the end of maturation, oocytes were evaluated for either glutathione peroxidase (n=300), catalase (n=564), or superoxide dismutase (n=294) activities. Glutathione peroxidase activity was determined by following the rate of NADPH oxidation, catalase activity was determined by following the rate of hydrogen peroxide decomposition, and superoxide dismutase activity was determined by following the reduction rate of cytochrome c, utilising the xanthine-xanthine oxidase system. Data were analysed using ANOVA and Tukey's test. There were no significant differences between oocytes matured with 100μM cyanidin and those that were not when comparing glutathione peroxidase and superoxide dismutase activities. Supplementation of 100μM cyanidin to maturation medium increased (P&lt;0.05) catalase activity in oocytes (0.78±0.15 units/oocyte) compared with no cyanidin supplementation (0.14±0.11 units/oocyte). These results indicate that supplementing 100μM cyanidin to the maturation medium of pig oocytes could reduce the negative effects of oxidative stress by increasing intracellular catalase activity during oocyte maturation.


2014 ◽  
Vol 2014 ◽  
pp. 1-10 ◽  
Author(s):  
Néstor Aarón Mosqueda-Romo ◽  
Ana Laura Rodríguez-Morales ◽  
Fidel Orlando Buendía-González ◽  
Margarita Aguilar-Sánchez ◽  
Jorge Morales-Montor ◽  
...  

We decreased the level of gonadal steroids in female and male mice by gonadectomy. We infected these mice withP. bergheiANKA and observed the subsequent impact on the oxidative stress response. Intact females developed lower levels of parasitaemia and lost weight faster than intact males. Gonadectomised female mice displayed increased levels of parasitaemia, increased body mass, and increased anaemia compared with their male counterparts. In addition, gonadectomised females exhibited lower specific catalase, superoxide dismutase, and glutathione peroxidase activities in their blood and spleen tissues compared with gonadectomised males. To further study the oxidative stress response inP. bergheiANKA-infected gonadectomised mice, nitric oxide levels were assessed in the blood and spleen, and MDA levels were assessed in the spleen. Intact, sham-operated, and gonadectomised female mice exhibited higher levels of nitric oxide in the blood and spleen compared with male mice. MDA levels were higher in all of the female groups. Finally, gonadectomy significantly increased the oxidative stress levels in females but not in males. These data suggest that differential oxidative stress is influenced by oestrogens that may contribute to sexual dimorphism in malaria.


2001 ◽  
Vol 2 (3) ◽  
pp. 211-216 ◽  
Author(s):  
Robert M. Strother ◽  
Tonya G. Thomas ◽  
Mary Otsyula ◽  
Ruth A. Sanders ◽  
John B. Watkins III

Rats fed a galactose-rich diet have been used for several years as a model for diabetes to study, particularly in the eye, the effects of excess blood hexoses. This study sought to determine the utility of galactosemia as a model for oxidative stress in extraocular tissues by examining biomarkers of oxidative stress in galactose-fed rats and experimentally-induced diabetic rats. Sprague-Dawley rats were divided into four groups: experimental control; streptozotocin-induced diabetic; insulin-treated diabetic; and galactose-fed. The rats were maintained on these regimens for 30 days, at which point the activities of catalase, glutathione peroxidase, glutathione reductase, and superoxide dismutase, as well as levels of lipid peroxidation and reduced and oxidized glutathione were determined in heart, liver, and kidney. This study indicates that while there are some similarities between galactosemic and diabetic rats in these measured indices of oxidative stress (hepatic catalase activity levels and hepatic and renal levels of oxidized glutathione in both diabetic and galactosemic rats were significantly decreased when compared to normal), overall the galactosemic rat model is not closely parallel to the diabetic rat model in extra-ocular tissues. In addition, several effects of diabetes (increased hepatic glutathione peroxidase activity, increased superoxide dismutase activity in kidney and heart, decreased renal and increased cardiac catalase activity) were not mimicked in galactosemic rats, and glutathione concentration in both liver and heart was affected in opposite ways in diabetic rats and galactose- fed rats. Insulin treatment reversed/prevented the activity changes in renal and cardiac superoxide dismutase, renal and cardiac catalase, and hepatic glutathione peroxidase as well as the hepatic changes in lipid peroxidation and reduced and oxidized glutathione, and the increase in cardiac glutathione. Thus, prudence should be exercised in the use of experimentally galactosemic rats as a model for diabetes until the correspondence of the models has been more fully characterized.


Sign in / Sign up

Export Citation Format

Share Document