Hippocampal Oxidative Stress Induced by Radiofrequency Electromagnetic Radiation and the Neuroprotective Effects of Aerobic Exercise in Rats: A Randomized Control Trial

Author(s):  
Mina Rasouli Mojez ◽  
Abbas Ali Gaeini ◽  
Siroos Choobineh ◽  
Mohsen Sheykhlouvand

Background: The present study determined whether 4 weeks of moderate aerobic exercise improves antioxidant capacity on the brain of rats against oxidative stress caused by radiofrequency electromagnetic radiation emitted from cell phones. Methods: Responses of malondialdehyde, catalase, glutathione peroxidase, and superoxide dismutase, as well as the number of hippocampal dead cells, were examined. Male Wistar rats (10–12 wk old) were randomly assigned to 1 of 4 groups (N = 8): (1) moderate aerobic exercise (EXE) (2 × 15–30 min at 1215 m/min speed with 5 min of active recovery between sets), (2) exposure to 900/1800 MHz radiofrequency electromagnetic waves 3 hours per day (RAD), (3) EXE + RAD, and (4) exposure to an experimental phone without battery. Results: Following the exposure, the number of the hippocampal dead cells was significantly higher in group RAD compared with groups EXE, EXE + RAD, and control group. Malondialdehyde concentration in group RAD was significantly higher than that of groups EXE, EXE + RAD, and control group. Also, the activity of catalase, glutathione peroxidase, and superoxide dismutase in groups EXE, EXE + RAD, and control group was significantly higher compared with those of the exposure group. Conclusion: This study demonstrated that moderate aerobic exercise enhances hippocampal antioxidant capacity against oxidative challenge in the form of radiofrequency electromagnetic waves.

Author(s):  
L. K. Parkhomenko ◽  
◽  
L. A. Strashok ◽  
S. I. Turchina ◽  
G. V. Kosovtsova ◽  
...  

Recently, interest in the problem of free radical oxidation in biological membranes, which is directly related to both the normal functioning of cells and the occurrence, course and outcome of many pathological conditions, has increased again in clinical medicine. The aim was to determine the role and impact of antioxidant defense in boys with hypoandrogenism. The study involved 75 adolescents with hypoandrogenism aged 13–18 years, who underwent a complex of clinical and laboratory examinations. All patients were conducted complex of anthropometric research and determination of the degree of delayed puberty, laboratory and instrumental examination. Free radical oxidation was determined by the levels of malondialdehyde, conjugated dienes, carbonated proteins, superoxide dismutase and catalase in the serum, and restored glutathione and glutathione peroxidase in whole blood. Based on their determination, the coefficient of oxidative stress was calculated. Statistical processing of results was performed using parametric and nonparametric methods. The study of indicators of the free radical oxidation process found that adolescents with hypoandrogenism have multidirectional changes in the oxidation of proteins and lipids, namely: the level of conjugated dienes increases, the concentration of malondialdehyde remains at the level of the control group, and the level of carbonated proteins tends to decrease. As for the activity of antioxidant protection enzymes, a significant decrease in the level of glutathione peroxidase was detected, while the level of superoxide dismutase and catalase remained at the level of normative indicators. Oxidative stress accompanies and is one of the pathogenetic links in the formation or maintenance of the state of hypoandrogenism in boys. This requires the use of antioxidants, the complex of which must be selected individually.


CNS Spectrums ◽  
2017 ◽  
Vol 24 (03) ◽  
pp. 333-337 ◽  
Author(s):  
Maiara Zeni-Graiff ◽  
Adiel C. Rios ◽  
Pawan K. Maurya ◽  
Lucas B. Rizzo ◽  
Sumit Sethi ◽  
...  

IntroductionOxidative stress has been documented in chronic schizophrenia and in the first episode of psychosis, but there are very little data on oxidative stress prior to the disease onset.ObjectiveThis work aimed to compare serum levels of superoxide dismutase (SOD) and glutathione peroxidase (GPx) in young individuals at ultra-high risk (UHR) of developing psychosis with a comparison healthy control group (HC).MethodsThirteen UHR subjects and 29 age- and sex-matched healthy controls (HC) were enrolled in this study. Clinical assessment included the Comprehensive Assessment of At-Risk Mental States (CAARMS), the Semi-Structured Clinical Interview for DSM-IV Axis-I (SCID-I) or the Kiddie-SADS-Present and Lifetime Version (K-SADS-PL), and the Global Assessment of Functioning (GAF) scale. Activities of SOD and GPx were measured in serum by the spectrophotometric method using enzyme-linked immunosorbent assay kits.ResultsAfter adjusting for age and years of education, there was a significant lower activity of SOD and lower GPX activity in the UHR group compared to the healthy control group (rate ratio [RR]=0.330, 95% CI 0.187; 0.584, p<0.001 and RR=0.509, 95% CI 0.323; 0.803, p=0.004, respectively). There were also positive correlations between GAF functioning scores and GPx and SOD activities.ConclusionOur results suggest that oxidative imbalances could be present prior to the onset of full-blown psychosis, including in at-risk stages. Future studies should replicate and expand these results.


2021 ◽  
Vol 10 (4) ◽  
pp. 328-339
Author(s):  
Bahare Heydari ◽  
◽  
Mohsen Ghofrani ◽  
Mohammad Ebrahim Bahram ◽  
◽  
...  

Objective: The production of reactive oxygen species in exercise causes oxidative stress which disturbs the balance of oxidants and antioxidants, causing destructive effects on cells. The present study aims to investigate the effect of three types of massage (Swedish, Russian, Thai) on serum levels of Malondialdehyde (MDA), Glutathione Peroxidase (GPX) and Superoxide Dismutase (SOD) following one session of exhaustive exercise. Methods: This quasi-experimental study was conducted on 48 female futsal players aged 17-22 years in Zahedan, Iran who were selected using a purposive sampling method, and randomly divided into four groups of Swedish massage (Long strokes with pressing and tapping using hands), Russian massage (Medium to high pressure), Thai massage (Pressure to certain parts of the body) and Control. The exercise program was based on Bruce protocol. Serum levels of MDA, GPX and SOD were measured by before and immediately after exercise and after massage. Data analysis was performed using repeated measures ANOVA, considering a significance level of P≤0.05. Results: In all three types of massage, there was a significant decrease in serum level of MDA (0.22±0.08), and a significant increase in GPX (1.84±0.46) and SOD (10.02±2.86) levels after exhaustive (P=0.001). No significant difference was observed in the control group. Conclusion: It seems that Russian, Thai, and Swedish types of massage can affect the serum levels of the MDA (as an oxidative stress marker) and the antioxidant enzymes of GPX and SOD during the post-exercise recovery period.


2022 ◽  
Vol 20 (4) ◽  
pp. 63-70
Author(s):  
O. V. Smirnova ◽  
V. V. Tsukanov ◽  
A. A. Sinyakov ◽  
O. L. Moskalenko ◽  
N. G. Elmanova ◽  
...  

Background. The problem of gastric cancer remains unresolved throughout the world, while chronic atrophic gastritis (CAG) increases the likelihood of its development by 15 times. In the Russian Federation, the incidence of gastric cancer (GC) is among the highest, with it prevailing among males. One of the leading mechanisms in molecular pathology of membranes is lipid peroxidation (LPO). The severity of oxidative membrane damage depends on concomitant diseases, contributing to emergence and progression of pathological processes and development of cancer. Currently, the problem of LPO is unsolved in biological systems.The aim of this study was to investigate the state of LPO and antioxidant defense system in CAG and GC. Materials and methods. The parameters were studied in 45 patients with CAG and 50 patients with GC. The control group included 50 practically healthy volunteers without gastrointestinal complaints, who did not have changes in the gastric mucosa according to the fibroesophagogastroduodenoscopy (FEGDS) findings.Results. In patients with CAG, an increase in malondialdehyde, superoxide dismutase, catalase, glutathione S-transferase, and glutathione peroxidase was found in the blood plasma compared with the control group. In patients with CAG, lipid peroxidation was activated, and the malondialdehyde level increased by 3.5 times relative to normal values. At the same time, the body fought against oxidative stress by increasing the activity of antioxidant enzymes, such as superoxide dismutase, catalase, glutathione S-transferase, and glutathione peroxidase. All patients with GC showed pronounced oxidative stress in the blood plasma in the form of a 45-fold increase in malondialdehyde. The activity of the main antioxidant enzyme superoxide dismutase was reduced in GC. Catalase was activated, which indicated pronounced oxidative stress, significant damage to blood vessels, and massive cell death. Glutathione-related enzymes (glutathione S-transferase and glutathione peroxidase) and the antioxidant protein ceruloplasmin were activated, which also indicated significant oxidative stress and severe intoxication in patients with GC.Conclusion. Depending on the stage and type of cancer, an in-depth study of lipid peroxidation and factors of the antioxidant defense system can be used to correct therapy and prevent cancer and can serve as markers of progression and prognosis in gastric cancer. 


2013 ◽  
Vol 2013 ◽  
pp. 1-7 ◽  
Author(s):  
Umit Nusret Basaran ◽  
Suleyman Ayvaz ◽  
Burhan Aksu ◽  
Turan Karaca ◽  
Mustafa Cemek ◽  
...  

Our hypothesis in this study is that desferrioxamine (DFX) has therapeutic effects on experimental lung contusions in rats. The rats were divided into four groups (n=8): control, control+DFX, contusion, and contusion+DFX. In the control+DFX and contusion+DFX groups, 100 mg/kg DFX was given intraperitoneally once a day just after the contusion and the day after the contusion. Contusions led to a meaningful rise in the malondialdehyde (MDA) level in lung tissue. MDA levels in the contusion+DFX group experienced a significant decline. Glutathione levels were significantly lower in the contusion group than in the control group and significantly higher in the contusion+DFX group. Glutathione peroxidase (GPx) and superoxide dismutase (SOD) levels in the contusion group were significantly lower than those in the control group. In the contusion+DFX group, SOD and GPx levels were significantly higher than those in the contusion group. In light microscopic evaluation, the contusion and contusion+DFX groups showed edema, hemorrhage, alveolar destruction, and leukocyte infiltration. However, histological scoring of the contusion+DFX group was significantly more positive than that of the contusion group. The iNOS staining in the contusion group was significantly more intensive than that in all other groups. DFX reduced iNOS staining significantly in comparison to the contusion group. This study showed that DFX reduced oxidative stress in lung contusions in rats and histopathologically ensured the recovery of the lung tissue.


Author(s):  
Mina Adampourezare ◽  
Parisa Sistani ◽  
Homeira Hatami Nemati

Introduction: Diazinon (DZN) administration produces lipid peroxidation as an indicator of oxidative stress in the brain. Some medicinal plants such as Dorema glabrum has antioxidant properties, so can be used as an antioxidant that may protect neurons from oxidative stress. The aim of present study was to investigate the effect of D. glabrum against DZN-induced oxidative stress in hippocampus. Methods: Twenty-four adult male Wistar rats were used in this study. The rats randomly were divided into four groups including a control group, and two groups received different doses of D. glabrum (40 and 80 mg/kg) as pre-treatment for 21 days with DZN (100 mg/Kg) that was injected intraperitoneally (ip) in last day of D. glabrum usage, and one group received only DZN. Thiobarbituric acid reactive substances (TBARS), which are the indicators of lipid peroxidation, and the activities of antioxidant enzymes (glutathione peroxidase, superoxide dismutase and catalase) were determined in the ratsʼ hippocampus. Results: Administration of DZN significantly increased TBARS levels and superoxide dismutase activity and decreased glutathione peroxidase activity but there were no significant changes in catalase activity in the hippocampus. Combined D. glabrum and DZN treatment, caused a significant increase in glutathione peroxidase, a significant decrease of TBARS and a significant decrease in superoxide dismutase and again no significant changes in catalase activity in the rats’ hippocampus when compared to the rats treated with DZN. Conclusion: Our study demonstrated that D. glabrum had an amelioratory effect on oxidative stress induced by DZN.


2020 ◽  
Vol 8 (1) ◽  
pp. 89-95
Author(s):  
Ahmad Rizki Dwi Prasetia ◽  
Waluyo Rudiyanto

ABSTRAK Ponsel merupakan alat komunikasi yang banyak dimiliki oleh manusia. Hal ini dikarenakan keefektifan oleh ponsel itu sendiri. Dalam satu ponsel, penggunanya tidak hanya dapat berkomunikasi akan tetapi juga bisa melakukan berbagai aktivitas seperti mencari suatu informasi ataupun mendengarkan musik. Di balik kehebatan ponsel tersebut sebenarnya mengandung efek negatif berupa pancaran gelombang elektromagnetiknya yang berbahaya bagi otak, terlebih bila digunakan untuk menelepon dalam jangka waktu yang lama. Radiasi elektromagnetik yang berupa non-ionisasi ini baru akan menimbulkan efek negatif bila tubuh terpajan Specific Absorption Rate (SAR) >4 watt/kg. Saat menelepon efek yang langsung ditimbulkan berupa nyeri kepala karena adanya peningkatan tekanan darah, namun untuk waktu yang lebih lama lagi dapat menimbulkan kanker otak karena adanya penurunan produksi serotonin dan melatonin yang mana kerjanya untuk menekan timbulnya tumor. Mungkin Radiasi tidak berperan secara langsung dalam terbentuknya tumor, namun dalam studi lebih lanjut, paparan radiasi yang banyak juga dapat menaikkan malondialdehyde (MDA) serta pengurangan yang signifikan pada antioksidan seperti glutathione (GSH), superoxide dismutase (SOD), dan glutathione peroxidase (GPX). Hal ini dapat mengakibatkan peningkatan Reactive Oxygen Species (ROS) dan penurunan melatonin dalam serum sehingga terjadinya kerusakan oksidatif pada jaringan otak. Pada bagian hipokampus sendiri, didapatkan bahwa radiasi elektromagnetik dapat menghambat frekuensi pelepasan neuron pada Cornu Ammonis area 1 (CA1) hipokampus yang nantinya dapat menyebabkan penurunan kemampuan belajar dan memori.   Kata Kunci:  otak, paparan  gelombang elektromagnetik, ponsel  ABSTRACT Cell phones are a communication tool that is widely owned by humans. This is because of the effectiveness of the cellphone itself. In one cellphone, users can not only communicate but also can do various activities such as searching for information or listening to music. Behind this cellphone, it actually contains a negative effect consisting of the emission of electromagnetic waves which are harmful to the brain, before being used to move for a long time. Electromagnetic radiation which consists of non-recent ionization will have a negative effect if the body is exposed to Specific Absorption Rate (SAR)> 4 watts / kg. When calling the effects directly caused by blood pressure, but for a longer time can cause brain cancer due to a decrease in the production of serotonin and melatonin which is Tinjauan Pustaka  JIMKI Volume 8 No.1 | November 2019 – Februari 2020           90 needed to increase the incidence of tumors. Radiation may not directly support tumor formation, but in further studies, greater radiation exposure can also increase malondialdehyde (MDA) and also present significant antioxidants such as glutathione (GSH), superoxide dismutase (SOD), and glutathione peroxidase (GPX). This can increase Reactive Oxygen Species (ROS) and decrease melatonin in the serum thereby preventing oxidative damage to brain tissue. In the hippocampus itself, electromagnetic radiation can be obtained which can release the frequency of the release of neurons in the Cornu Ammonis area 1 (CA1) hippocampus that can be used can cause a decrease in learning ability and memory.      Keywords:  brain, cellphone, electromagnetic waves' exposure


Author(s):  
Nazlı Ercan ◽  
Mustafa Koçkaya

Oxidative stress, which plays an active role in the pathogenesis of various diseases, continues to be relevant in assessing the condition changes such as aggression. Some of Kangal dogs have been found to eat their own puppies during their first 24 hours following birth, as a case called maternal cannibalism. The present study aims to determine the levels of serum malondialdehyde (MDA), which is a product of lipid peroxidation, and serum glutathione peroxidase (GPx) and superoxide dismutase (SOD) enzymes, which are the parameters of antioxidant defense system, and total protein and albumin levels and to show their relationship with cannibalism. The study material consists of blood and blood serum of 30 Kangal dog breed in total, 15 of which have maternal cannibalism and 15 haven’t observed maternal cannibalism as a control group. Glutathione peroxidase, superoxide dismutase, malondialdehyde levels were investigated by means of spectrophotometric method in blood serum of these animals. The difference between the mean values of total protein, GPx, SOD, MDA and albumin was statistically significant in the results obtained. These findings conclude that oxidative stress and antioxidative metabolism plays a role in the pathogenesis of cannibalism in dogs.


Nutrients ◽  
2020 ◽  
Vol 12 (5) ◽  
pp. 1447
Author(s):  
Ching-Chien Chang ◽  
Chia-Wen Chen ◽  
Eddy Owaga ◽  
Wan-Ting Lee ◽  
Ting-Ni Liu ◽  
...  

High-strength or long-duration exercise can lead to significant fatigue, oxidative stress, and muscle damage. The purpose of this study was to examine the effect of mangosteen concentrate drink (MCD) supplementation on antioxidant capacity and lactate clearance in rats after running exercise. Forty rats were divided into five groups: N, non-treatment; C, control; or supplemented with MCD, including M1, M5, and M10 (0.9, 4.5, and 9 mL/day) for 6 weeks. The rats were subjected to 30 min running and exhaustive-running tests using a treadmill. The blood lactate; triglyceride; cholesterol and glucose levels; hepatic and muscular malonaldehyde (MDA) levels; and antioxidant enzymes, including superoxide dismutase (SOD), glutathione peroxidase (GPx), and catalase (CAT), were analyzed. The results of this study demonstrated that MCD supplementation can increase GPx and CAT activities, alleviate oxidative stress in muscle, and increase lactate clearance, and is thereby beneficial to reduced muscle fatigue after exercise.


2021 ◽  
Vol 2021 ◽  
pp. 1-8
Author(s):  
Hai-Xin Hua ◽  
Hai-Bo Deng ◽  
Xiu-Ling Huang ◽  
Chang-Qing Ma ◽  
Ping Xu ◽  
...  

Objective. The aim of the study was to investigate the potential effects of waste anesthetic gas (WAG) on oxidative stress, DNA damage, and vital organs. Methods. A total of 150 members of the staff at a hospital were assigned to an exposure group or control group. The 68 operating room (OR) staff in the exposure group were exposed to WAG, and the 82 non-OR staff in the control group were not exposed to WAG. Air samples were collected in the OR, and the sevoflurane concentrations in the samples were determined. Superoxide dismutase (SOD), glutathione peroxidase (GSH-px), and malondialdehyde (MDA) in plasma from the participants were determined to assess oxidative stress. Western blot analysis was used to detect γH2AX in peripheral blood to assess DNA damage. Hematopoietic parameters, liver function, kidney function, and changes in electrophysiology were assessed to identify the effects on the vital organs. Results. The mean (±standard deviation) sevoflurane concentration in 172 air samples from 22 operating rooms was 1.11 ± 0.65   ppm . The superoxide dismutase activity and vital organ parameters (lymphocyte, hemoglobin, and total protein concentrations and heart rate) were significantly lower ( P < 0.05 ) in the exposed group than the control group. The malondialdehyde, total bilirubin, and creatinine concentrations and QT and QTc intervals were significantly higher ( P < 0.05 ) in the exposed group than the control group. There were no significant differences between the glutathione peroxidase activities and γH2AX concentrations for the exposed and control groups. Conclusions. Long-term occupational exposure to waste anesthetic gas may affect the antioxidant defense system and probably affects vital organ functions to some extent. No correlation between DNA damage and chronic exposure to WAG was observed.


Sign in / Sign up

Export Citation Format

Share Document