scholarly journals Injectable wireless microdevices: challenges and opportunities

2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Adam Khalifa ◽  
Sunwoo Lee ◽  
Alyosha Christopher Molnar ◽  
Sydney Cash

AbstractIn the past three decades, we have witnessed unprecedented progress in wireless implantable medical devices that can monitor physiological parameters and interface with the nervous system. These devices are beginning to transform healthcare. To provide an even more stable, safe, effective, and distributed interface, a new class of implantable devices is being developed; injectable wireless microdevices. Thanks to recent advances in micro/nanofabrication techniques and powering/communication methodologies, some wireless implantable devices are now on the scale of dust (< 0.5 mm), enabling their full injection with minimal insertion damage. Here we review state-of-the-art fully injectable microdevices, discuss their injection techniques, and address the current challenges and opportunities for future developments.

Sensors ◽  
2020 ◽  
Vol 20 (16) ◽  
pp. 4604
Author(s):  
Bradley D. Nelson ◽  
Salil Sidharthan Karipott ◽  
Yvonne Wang ◽  
Keat Ghee Ong

Wireless technologies are incorporated in implantable devices since at least the 1950s. With remote data collection and control of implantable devices, these wireless technologies help researchers and clinicians to better understand diseases and to improve medical treatments. Today, wireless technologies are still more commonly used for research, with limited applications in a number of clinical implantable devices. Recent development and standardization of wireless technologies present a good opportunity for their wider use in other types of implantable devices, which will significantly improve the outcomes of many diseases or injuries. This review briefly describes some common wireless technologies and modern advancements, as well as their strengths and suitability for use in implantable medical devices. The applications of these wireless technologies in treatments of orthopedic and cardiovascular injuries and disorders are described. This review then concludes with a discussion on the technical challenges and potential solutions of implementing wireless technologies in implantable devices.


Author(s):  
Maria Lund Jensen ◽  
Jayme Coates

Development of implantable medical devices is becoming increasingly interesting for manufacturers, but identifying the right Human Factors Engineering (HFE) approach to ensure safe use and effectiveness is challenging. Most active implantable devices are highly complex; they are built on extremely advanced, compact technology, often comprise systems of several device elements and accessories, and they span various types of user interfaces which must facilitate diverse interaction performed by several different user groups throughout the lifetime of the device. Furthermore, since treatment with implantable devices is often vital and by definition involves surgical procedures, potential risks related to use error can be severe. A systematic mapping of Product System Elements and Life Cycle Stages can help early identification of Use Cases, and for example user groups and high-level use risks, to be accounted for via HFE throughout development to optimize Human Factors processes and patient outcomes. This paper presents a concrete matrix tool which can facilitate an early systematic approach to planning and frontloading of Human Factors Engineering activities in complex medical device development.


2020 ◽  
Vol 11 ◽  
pp. 1134-1146
Author(s):  
Mykola Borzenkov ◽  
Piersandro Pallavicini ◽  
Angelo Taglietti ◽  
Laura D’Alfonso ◽  
Maddalena Collini ◽  
...  

Bacterial contamination is a severe issue that affects medical devices, hospital tools and surfaces. When microorganisms adhere to a surface (e.g., medical devices or implants) they can develop into a biofilm, thereby becoming more resistant to conventional biocides and disinfectants. Nanoparticles can be used as an antibacterial agent in medical instruments or as a protective coating in implantable devices. In particular, attention is being drawn to photothermally active nanoparticles that are capable of converting absorbed light into heat. These nanoparticles can efficiently eradicate bacteria and biofilms upon light activation (predominantly near the infrared to near-infrared spectral region) due a rapid and pronounced local temperature increase. By using this approach new, protective, antibacterial surfaces and materials can be developed that can be remotely activated on demand. In this review, we summarize the state-of-the art regarding the application of various photothermally active nanoparticles and their corresponding nanocomposites for the light-triggered eradication of bacteria and biofilms.


Author(s):  
Elizabeth S. Drexler ◽  
Andrew J. Slifka ◽  
Nicholas Barbosa ◽  
John W. Drexler

Environmental conditions can have major influence on the lifetimes and reliability of active implantable medical devices (e.g., neurostimulators, cochlear implants, internal cardioverter defibrillators). These environmental conditions can range from those encountered by the device in processing and production to transportation and storage to actual operation. Although one might argue that the environmental conditions found in the first two situations are harsher than those of the third, failures that result from those situations are screened before implantation. If we assume that the active medical device is in perfect operational form at the time it is implanted, it will still experience a host of environmental conditions that can affect reliability. In fact, the ultimate goal of these medical devices is to restore the patient, wherever they may reside, to normal activities. A list of some environmental conditions that may be experienced by a device implanted in a representative patient is found in Table 1.


Soft Matter ◽  
2014 ◽  
Vol 10 (39) ◽  
pp. 7685-7691 ◽  
Author(s):  
Oriano Francescangeli ◽  
Francesco Vita ◽  
Edward T. Samulski

Cybotaxis, the molecular clustering observed in bent-core nematics, governs the unique properties of this new class of anisotropic fluids.


2011 ◽  
Vol 11 (2) ◽  
pp. 391-415 ◽  
Author(s):  
Dawn Knight

This paper takes stock of the current state-of-the-art in multimodal corpus linguistics, and proposes some projections of future developments in this field. It provides a critical overview of key multimodal corpora that have been constructed over the past decade and presents a wish-list of future technological and methodological advancements that may help to increase the availability, utility and functionality of such corpora for linguistic research.


2021 ◽  
Vol 23 (12) ◽  
pp. 46-59
Author(s):  
B. Sathyabhama ◽  
◽  
B. Siva Shankari ◽  

Implantable Medical Devices (IMDs) reside within human bodies either temporarily or permanently, for diagnostic, monitoring, or therapeutic purposes. IMDs have a history of outstanding success in the treatment of many diseases, including heart diseases, neurological disorders, and deafness etc.,With the ever-increasing clinical need for implantable devices comes along with the continuous flow of technical challenges. Comparing with the commercial portable products, implantable devices share the same need to reduce size, weight and power. Thus, the need for device integration becomes very much imperative. There are many challenges faced when creating an implantable medical device. While this paper focuses on various techniques adapted to design a reliable device and also focus on the key electronic features of designing an ultra-low power implantable medical circuits for devices and systems.


2020 ◽  
Vol 27 (10) ◽  
pp. 1580-1599 ◽  
Author(s):  
Gabriel Victor Simões Dutra ◽  
Weslany Silvério Neto ◽  
João Paulo Simões Dutra ◽  
Fabricio Machado

Medical devices are important diagnosis and therapy tools for several diseases which include a wide range of products. Technological advances in this area have been proposed to reduce adverse complication incidences. New technologies and manufacturing processes, as well as the development of new materials or medical devices with modified surface and the use of biodegradable polymeric devices such as a substrate for cell culture in the field of tissue engineering, have attracted considerable attention in recent years by the scientific community intended to produce medical devices with superior properties and morphology. This review article focused on implantable devices, addresses the major advances in the biomedical field related to the devices manufacture processes such as 3D printing and hot melting extrusion, and the use of polymer matrices composed of copolymers, blends, nanocomposites or grafted with antiproliferative drugs for manufacturing and/or coating the devices surface.


Author(s):  
Lillian J. Ratliff ◽  
Roy Dong ◽  
Shreyas Sekar ◽  
Tanner Fiez

The increasingly tight coupling between humans and system operations in domains ranging from intelligent infrastructure to e-commerce has led to a challenging new class of problems founded on a well-established area of research: incentive design. There is a clear need for a new tool kit for designing mechanisms that help coordinate self-interested parties while avoiding unexpected outcomes in the face of information asymmetries, exogenous uncertainties from dynamic environments, and resource constraints. This article provides a perspective on the current state of the art in incentive design from three core communities—economics, control theory, and machine learning—and highlights interesting avenues for future research at the interface of these domains.


Sensors ◽  
2021 ◽  
Vol 21 (22) ◽  
pp. 7712
Author(s):  
Ghadeer Abdelkader ◽  
Khalid Elgazzar ◽  
Alaa Khamis

In an effort to reach accident-free milestones or drastically reduce/eliminate road fatalities rates and traffic congestion and to create disruptive, transformational mobility systems and services, different parties (e.g., automakers, universities, governments, and road traffic regulators) have collaborated to research, develop, and test connected vehicle (CV) technologies. CVs create new data-rich environments and are considered key enablers for many applications and services that will make our roads safer, less congested, and more eco-friendly. A deeper understanding of the CV technologies will pave the way to avoid setbacks and will help in developing more innovative applications and breakthroughs. In the CV paradigm, vehicles become smarter by communicating with nearby vehicles, connected infrastructure, and the surroundings. This connectivity will be substantial to support different features and systems, such as adaptive routing, real-time navigation, and slow and near real-time infrastructure. Further examples include environmental sensing, advanced driver-assistance systems, automated driving systems, mobility on demand, and mobility as a service. This article provides a comprehensive review on CV technologies including fundamental challenges, state-of-the-art enabling technologies, innovative applications, and potential opportunities that can benefit automakers, customers, and businesses. The current standardization efforts of the forefront enabling technologies, such as Wi-Fi 6 and 5G-cellular technologies are also reviewed. Different challenges in terms of cooperative computation, privacy/security, and over-the-air updates are discussed. Safety and non-safety applications are described and possible future opportunities that CV technology brings to our life are also highlighted.


Sign in / Sign up

Export Citation Format

Share Document