scholarly journals Effects of alkali solution on the dissolution kinetics and optimization processes of iron from Akwuke ore

2020 ◽  
Vol 44 (1) ◽  
Author(s):  
Kingsley Amechi Ani ◽  
Chidubem Chukwuebuka Chukelu

Abstract Background The dissolution process kinetics and optimization of iron from Akwuke ore were investigated in this study. The effects of process parameters such as agitation rate and ore particle size on the dissolution process were also examined. The Akwuke ore was characterized employing the XRD, FT-IR, SEM, and UV-spectroscopy. Results The results from the rate constants indicated that the diffusion through the boundary layer process with R2 > 0.96 was the rate-determining mechanism. The maximum iron dissolution rate of 83.2% was obtained at 45-μm particle size while 81.2% and 72.6% iron dissolution rates were obtained at 490 and 390 rpm agitation rates, respectively. Silicon oxide, aluminum oxide, and iron oxide were present in Akwuke ore as indicated from the XRD analysis. The RSM predicted optimum value of the iron dissolution rate from the numerical optimization was experimentally validated to confirm the satisfactory performance of the quadratic model. Conclusion This study concludes and presents the potential extraction of iron from Akwuke ore, which will be of immense benefit in hydrometallurgical process.

Author(s):  
Rahul Kumar ◽  
Sanjay Kumar ◽  
Pranava Chaudhari ◽  
Amit K. Thakur

Abstract Flufenamic acid (FFA) is a Biopharmaceutical Classification System- II (BCS-II) class drug with poor bioavailability and a lower dissolution rate. Particle size reduction is one of the conventional approaches to increase the dissolution rate and subsequently the bioavailability. The use of the liquid antisolvent method for particle size reduction of FFA was studied in this work. Ethanol and water were used as solvent and antisolvent, respectively. Experimental parameters such as solution concentration (10–40 mg/ml), flow rate (120–480 ml/h), temperature (298–328 K) and stirring speed (200–800 rpm) were investigated. Furthermore, the solid dispersion of FFA was prepared with polyvinylpyrrolidone K-30 (PVP K-30) with different weight ratios (1:1, 1:2, 1:3 and 1:4) and samples were characterized using SEM, FTIR and XRD techniques. The experimental investigation revealed that higher values of concentration, injection rate, stirring speed, along with lower temperature favored the formation of fine particles. SEM analysis revealed that the morphology of raw FFA changed from rock-like to rectangular-like after liquid antisolvent recrystallization. FTIR analysis validated the presence of hydrogen bonding between FFA and PVP in solid dispersion. XRD analysis showed no significant change in the crystallinity of the processed FFA.


Author(s):  
Yuksel Abali ◽  
Salih U Bayca ◽  
Ayse E Guler

In this study, the dissolution kinetics of tincal in phosphoric acid solutions was investigated. The effects of reaction temperature, acid concentration, solid to liquid ratio, particle size and stirring speed were determined in the experiments. The results showed that the dissolution rate increased with increasing acid concentration, reaction temperature, stirring speed and increased with decreasing particle size and solid to liquid ratio. The dissolution rate was found to be based on the first order pseudo homogenous reaction model. The activation energy of the tincal in phosphoric acid solution was determined as 42.28 kJ.mol-1.


2019 ◽  
Vol 55 (1) ◽  
pp. 9-19
Author(s):  
Olfa Lachkar-Zamouri ◽  
Khemaies Brahim ◽  
Faten Bennour ◽  
Ismail Khattech

A mixture of phosphoric and sulfuric acid was used to investigate the dissolution kinetics of phosphate ore by Differential Reaction Calorimetry (DRC). The effect of the solid-to-iquid ratio, concentration, stirring speed, particle size and temperature of the reaction is examined. It was established that the dissolution rate increased with stirring speed and particle size. However, rising the olid-to-iquid ratio, temperature and concentration decreased the dissolution rate. It was determined that the dissolution rate fits in the first order of the pseudo-homogeneous reaction model. Two negative values of apparent activation energies were found in the range of 25 to 60?C. The experimental data were tested by graphical and statistical methods and it was found that the following models were best fitted for the experimental data and an empirical equation for the process was developed. -ln (1 ? x) = [2,2 E-09((S/L)0.75C -0.461G0.447(SS) 0.471exp (2671/T)]t. T? 40?C -ln (1 ? x) = [2,2 E-09((S/L)0.75C -0.461G0.447(SS) 0.471exp (6959/T)]t. T > 45?C


Author(s):  
Okoro Sylvanus Ezenwa ◽  
Asadu Christian Oluchukwu ◽  
Abuh Mark Agaba

Removal of lead from Enugu coal with different acids as the leachant under different conditions such as leaching time, particle size, acid concentration, and leachant volume was investigated in this studies. The filtrate from each treatment was analyzed with Atomic Absorption X-ray Spectrometer (AAS) to determine the amount of lead leached. Nitric acid was found to be the best acid for the leaching of lead from Enugu coal. Kinetic studies carried out showed that the dissolution rate increased with: decreasing particle size, increase in stirring speed, acid concentration and leaching temperature. The experimental results revealed that the dissolution rate is a chemical reaction controlled via hydrogen ion concentration [H+], with reaction order of 0.9 and the reaction kinetics can be expressed as 1-(1-X)1/3 =2.566x10-4(CHNO3)0.86 (dp).992 (L/S).44 (SS).049 exp(53.49/RT). A quadratic model was predicted and optimized using second order orthogonal design (Box-Benken) which resulted in Particle size of 40µm, reaction time of 8.5 hours, and HNO3 concentration of 2mol/dm3. The optimum conditions were validated at model desirability of 1. Experimental value of 96.39% with error of 0.530% was removed.


2021 ◽  
Vol 9 (3) ◽  
pp. 068-076
Author(s):  
Benson Chinweuba Udeh

This is a research report of the effects of process variables on the reactivity of slaked lime produced from Shuk quicklime. It involved the calcination (at temperature of 1000 0C, particle size of 90 µm and time of 3 hrs) of Shuk limestone and subsequent slaking of its quicklime. The quicklime was characterized by x-ray diffractometer (XRD) and scanning electron microscopy (SEM) respectively to determine its mineral content and surface morphology respectively. Effects of process variables (quicklime/water ratio, particle size and time) on the reactivity of the slaked lime were determined. The reactivity was optimized using response surface methodology (RSM). The XRD analysis revealed calcite as the type mineral of the Shuk quicklime. The surface morphology of the quicklime sample showed that the particles are packed together in powdered form with visible pores that will allow passage of water. Reactivity of the lime was influenced by the quicklime/water ratio, particle size and time. Quadratic model appropriately explained the relationship between reactivity and considered slaking factors of quicklime/water ratio, particle size and time. The optimum reactivity value of the slaked lime was obtained as 59.3 oC at quicklime/water ratio of 0.24 g/ml, particle size of 88.2 µm and time of 15.1 minutes.


Author(s):  
Rupali L. Shid ◽  
Shashikant N. Dhole ◽  
Nilesh Kulkarni ◽  
Santosh L Shid

Poor water solubility and slow dissolution rate are issues for the majority of upcoming and existing biologically active compounds. Simvastatin is poorly water-soluble drug and its bioavailability is very low from its crystalline form. The purpose of this study wasto increase the solubility and dissolution rate of simvastatin by the  preparation of nanosuspension by emulsification solvent diffusion method at laboratory scale. Prepared nanosus-pension was evaluated for its particle size and in vitro dissolution study and characterized by zeta potential,differential scanning calorimetry (DSC) and X-Ray diffractometry (XRD), motic digital microscopy, entrapment efficiency, total drug content, saturated solubility study and in vivo study. A 23 factorial design was employed to study the effect of independent variables, amount of SLS (X1), amount of PVPK-30 (X2) and poloxamer-188 (X3) and dependent variables are total drug content and polydispersity Index. The obtained results showed that particle size (nm) and rate of dissolution has been improved when nanosuspension prepared with the higherconcentration of PVPK-30 with the higher concentration of PVP K-30 and Poloxamer-188 and lower concentration of SLS. The particle size and zeta potential of optimized formulation was found to be 258.3 nm and 23.43. The rate of dissolution of the optimized nanosuspension was enhanced (90% in 60min), relative to plain simvastatin  (21% in 60 min), mainly due to the formation of nanosized particles. These results indicate the suitability of 23 factorial  design for preparation of simvastatin loaded nano-suspension significantly improved in vitro dissolution rate and thus possibly enhance fast onset of therapeutic drug effect. In vivo study shows increase in bioavailability in nanosuspension formulation than the plain simvastatin drug.


2020 ◽  
Vol 17 ◽  
Author(s):  
Mohammad Hossain Shariare ◽  
Tonmoy Kumar Mondal ◽  
Hani Alothaid ◽  
Md. Didaruzzaman Sohel ◽  
MD Wadud ◽  
...  

Aim: EPAS (evaporative precipitation into aqueous solution) was used in the current studies to prepare azithromycin nanosuspensions and investigate the physicochemical characteristics for the nanosuspension batches with the aim of enhancing the dissolution rate of the nanopreparation to improve bioavailability. Methods: EPAS method used in this study for preparing azithromycin nanosuspension was achieved through developing an in-house instrumentation method. Particle size distribution was measured using Zetasizer Nano S without sample dilution. Dissolved azithromycin nanosuspensions were also compared with raw azithromycin powder and commercially available products. Total drug content of nanosuspension batches were measured using an Ultra-Performance Liquid Chromatography (UPLC) system with Photodiode Array (PDA) detector while residual solvent was measured using gas chromatography (GC). Results: The average particle size of azithromycin nanosuspension was 447.2 nm and total drug content was measured to be 97.81% upon recovery. Dissolution study data showed significant increase in dissolution rate for nanosuspension batch when compared to raw azithromycin and commercial version (microsuspension). The residual solvent found for azithromycin nanosuspension is 0.000098023 mg/ mL or 98.023 ppb. Conclusion: EPAS was successfully used to prepare azithromycin nanoparticles that exhibited significantly enhanced dissolution rate. Further studies are required to scale up the process and determine long term stability of the nanoparticles.


1984 ◽  
Vol 32 (10) ◽  
pp. 4130-4136 ◽  
Author(s):  
SHIGERU YAKOU ◽  
KUMIKO UMEHARA ◽  
TAKASHI SONOBE ◽  
TSUNEJI NAGAI ◽  
MASAYASU SUGIHARA ◽  
...  

2017 ◽  
Vol 2017 ◽  
pp. 1-8 ◽  
Author(s):  
Kefeng Xiao ◽  
Weiqiang Wang ◽  
Dedong Hu ◽  
Yanpeng Qu ◽  
Zhihui Hao ◽  
...  

An annular gap nozzle was applied in solution enhanced dispersion by supercritical fluids (SEDS) process to prepare cefquinome controlled size submicron particles so as to enhance their efficacy. Analysis results of orthogonal experiments indicated that the concentration of solution was the primary factor to affect particle sizes in SEDS process, and feeding speed of solution, precipitation pressure, and precipitation temperature ranked second to fourth. Meanwhile, the optimal operating conditions were that solution concentration was 100 mg/mL, feeding speed was 9 mL/min, precipitation pressure was 10 MPa, and precipitation temperature was 316 K. The confirmatory experiment showed that D50 of processed cefquinome particles in optimal operating conditions was 0.73 μm. Moreover, univariate effect analysis showed that the cefquinome particle size increased with the increase of concentration of the solution or precipitation pressure but decreased with the increase of solution feeding speed. When precipitation temperature increased, the cefquinome particle size showed highest point. Moreover, characterization of processed cefquinome particles was analyzed by SEM, FT-IR, and XRD. Analysis results indicated that the surface appearance of processed cefquinome particles was flakes. The chemical structure of processed cefquinome particles was not changed, and the crystallinity of processed cefquinome particles was a little lower than that of raw cefquinome particles.


Sign in / Sign up

Export Citation Format

Share Document