scholarly journals The dysbiosis of ovine foot microbiome during the development and treatment of contagious ovine digital dermatitis

2021 ◽  
Vol 3 (1) ◽  
Author(s):  
J. S. Duncan ◽  
J. W. Angell ◽  
P. Richards ◽  
L. Lenzi ◽  
G. J. Staton ◽  
...  

Abstract Background Contagious Ovine Digital Dermatitis (CODD) is an emerging and common infectious foot disease of sheep which causes severe welfare and economic problems for the sheep industry. The aetiology of the disease is not fully understood and control of the disease is problematic. The aim of this study was to investigate the polybacterial aetiopathogenesis of CODD and the effects of antibiotic treatment, in a longitudinal study of an experimentally induced disease outbreak using a 16S rRNA gene amplicon sequencing approach. Results CODD was induced in 15/30 experimental sheep. During the development of CODD three distinct phenotypic lesion stages were observed. These were an initial interdigital dermatitis (ID) lesion, followed by a footrot (FR) lesion, then finally a CODD lesion. Distinct microbiota were observed for each lesion in terms of microbial diversity, clustering and composition. Porphyromonadaceae, Family XI, Veillonellaceae and Fusobacteriaceae were significantly associated with the diseased feet. Veillonellaceae and Fusobacteriaceae were most associated with the earlier stages of ID and footrot rather than CODD. Following antibiotic treatment of the sheep, the foot microbiota showed a strong tendency to return to the composition of the healthy state. The microbiota composition of CODD lesions collected by swab and biopsy methods were different. In particular, the Spirochaetaceae family were more abundant in samples collected by the biopsy method, suggesting that these bacteria are present in deeper tissues of the diseased foot. Conclusion In this study, CODD presented as part of a spectrum of poly-bacterial foot disease strongly associated with bacterial families Porphyromonadaceae, Family XI (a family in Clostridiales also known as Clostridium cluster XI), Veillonellaceae and Fusobacteriaceae which are predominately Gram-negative anaerobes. Following antibiotic treatment, the microbiome showed a strong tendency to return to the composition of the healthy state. The composition of the healthy foot microbiome does not influence susceptibility to CODD. Based on the data presented here and that CODD appears to be the severest end stage of sheep infectious foot disease lesions, better control of the initial ID and FR lesions would enable better control of CODD and enable better animal welfare.

2020 ◽  
Author(s):  
Jennifer S Duncan ◽  
Joseph W Angell ◽  
Peter Richards ◽  
Luca Lenzi ◽  
Gareth J Staton ◽  
...  

Abstract Background: Contagious Ovine Digital Dermatitis (CODD) is an emerging and common infectious foot disease of sheep which causes severe welfare and economic problems for the sheep industry. The aetiology of the disease is not fully understood and control of the disease is problematic. The aim of this study was to investigate the polybacterial aetiopathogenesis of CODD and the effects of antibiotic treatment, in a longitudinal study of an experimentally induced disease outbreak using a 16S rRNA gene amplicon sequencing approach.Results: CODD was induced in 15/30 experimental sheep. During the development of CODD three distinct phenotypic lesion stages were observed. These were an initial interdigital dermatitis (ID) lesion, followed by a footrot (FR) lesion, then finally a CODD lesion. Distinct microbiota were observed for each lesion in terms of microbial diversity, clustering and composition. Porphyromonadaceae, Familiy XI, Veillonellaceae and Fusobacteriaceae were significantly associated with the diseased feet. Veillonellaceae and Fusobacteriaceae were most associated with the earlier stages of ID and footrot rather than CODD. Following antibiotic treatment of the sheep, the foot microbiota showed a strong tendency to return to the composition of the healthy state. The microbiota composition of CODD lesions collected by swab and biopsy methods were different. In particular, the Spirochaetaceae family were more abundant in samples collected by the biopsy method, suggesting that these bacteria are present in deeper tissues of the diseased foot. Conclusion: In this study, CODD presented as part of a spectrum of poly-bacterial foot disease strongly associated with bacterial families Porphyromonadaceae, Family XI (a family in Clostridiales also known as Clostridium cluster XI), Veillonellaceae and Fusobacteriaceae which are predominately Gram-negative anaerobes. Following antibiotic treatment, the microbiome showed a strong tendency to return to the composition of the healthy state. The composition of the healthy foot microbiome does not influence susceptibility to CODD. Based on the data presented here and that CODD appears to be the severest end stage of sheep infectious foot disease lesions, better control of the initial ID and FR lesions would enable better control of CODD and enable better animal welfare.


2017 ◽  
Vol 83 (11) ◽  
Author(s):  
Kirstine Klitgaard ◽  
Mikael L. Strube ◽  
Anastasia Isbrand ◽  
Tim K. Jensen ◽  
Martin W. Nielsen

ABSTRACT At present, very little information exists regarding what role the environmental slurry may play as an infection reservoir and/or route of transmission for bovine digital dermatitis (DD), a disease which is a global problem in dairy herds. To investigate whether DD-related bacteria belong to the indigenous microbiota of the dairy herd environment, we used deep amplicon sequencing of the 16S rRNA gene in 135 slurry samples collected from different sites in 22 dairy farms, with and without DD-infected cows. Both the general bacterial populations and digital dermatitis-associated Treponema were targeted in this study. The results revealed significant differences in the bacterial communities between the herds, with only 12 bacterial taxa shared across at least 80% of all the individual samples. These differences in the herd microbiota appeared to reflect mainly between-herd variation. Not surprisingly, the slurry was dominated by ubiquitous gastrointestinal bacteria, such as Ruminococcaceae and Lachnospiraceae. Despite the low relative abundance of spirochetes, which ranged from 0 to 0.6%, we were able to detect small amounts of bacterial DNA from DD-associated treponemes in the slurry. However, the DD-associated Treponema spp. were detected only in samples from herds with reported DD problems. These data indicate that treponemes involved in the pathogenesis of DD are not part of the normal environmental microflora in dairy herds without clinical DD and, consequently, that slurry is not a primary reservoir of infection. IMPORTANCE Bovine digital dermatitis (DD), a dermal disease which causes lameness in dairy cattle, is a serious problem worldwide. To control this disease, the infection reservoirs and transmission routes of DD pathogens need to be clarified. The dairy herd slurry may be a pathogen reservoir of DD-associated bacteria. The rationale for the present study was, therefore, to examine whether DD-associated bacteria are always present in slurry or if they are found only in DD-afflicted herds. The results strongly indicated that DD Treponema spp. are not part of the indigenous slurry and, therefore, do not comprise an infection reservoir in healthy herds. This study applied next-generation sequencing technology to decipher the microbial compositions of environmental slurry of dairy herds with and without digital dermatitis.


2019 ◽  
Author(s):  
Rong Li ◽  
xuehai chen ◽  
Zhongzhen Liu ◽  
Yan Chen ◽  
Chuan Liu ◽  
...  

Abstract BackgroundIntrahepatic cholestasis of pregnancy (ICP) is a liver disease that specifically occurs during pregnancy. Pregnant women with ICP biochemically reflect elevated liver functions and increases in serum bilirubin levels, while clinically individuals can display symptoms of itching and have elevated risks of preterm delivery and stillbirths. We hypothesized that there linkages between gut microbiota and ICP progression exist and could be scientifically characterized. MethodsIn total, 27 patients with ICP and 31 unafflicted control patients were recruited in this study. We performed 16S rRNA gene amplicon sequencing on gut microbiota from individual fecal samples. Sequencing data was analyzed and the correlations between components of microbiota and patient ICP status were tested. Relative abundances, related metabolic pathways, and significantly different OTUs between ICP and control patients were identified.ResultsBiochemical indices including measures for bile, ALT, AST, Dbil, and Tbil, and these were found to at higher levels in ICP versus control patients. Gut microbiota in pregnant women was dominated by four major phyla and 27 core genera. PCoA analysis results indicated that there was marginal significant clustering in unweighted Unifrac distance matrices. A moderate correlation coefficient was observed between specific OTUs and measured clinical parameters of patients. When comparing relatively rare microbiota taxa, the abundance of Butyricimonas was lower, while Citrobacter, Pseudomonas, Streptococcus, and Weissella were higher in ICP patients than in control patients. No significant differences in the pathways between ICP and control patients were identified.ConclusionsOur research indicated that patients with ICP have altered phylogenetic gut microbiota profiles compared to control patients without ICP, and that the composition was associated with measurements of patient clinical parameters. These alterations may be correlated with variations of the levels of patient enteric bile acids, and may play a role in the progression of ICP.


2020 ◽  
Vol 87 (2) ◽  
Author(s):  
Patrik Soukup ◽  
Tomáš Větrovský ◽  
Petr Stiblik ◽  
Kateřina Votýpková ◽  
Amrita Chakraborty ◽  
...  

ABSTRACT All termites have established a wide range of associations with symbiotic microbes in their guts. Some termite species are also associated with microbes that grow in their nests, but the prevalence of these associations remains largely unknown. Here, we studied the bacterial communities associated with the termites and galleries of three wood-feeding termite species by using 16S rRNA gene amplicon sequencing. We found that the compositions of bacterial communities among termite bodies, termite galleries, and control wood fragments devoid of termite activities differ in a species-specific manner. Termite galleries were enriched in bacterial operational taxonomic units (OTUs) belonging to Rhizobiales and Actinobacteria, which were often shared by several termite species. The abundance of several bacterial OTUs, such as Bacillus, Clostridium, Corynebacterium, and Staphylococcus, was reduced in termite galleries. Our results demonstrate that both termite guts and termite galleries harbor unique bacterial communities. IMPORTANCE As is the case for all ecosystem engineers, termites impact their habitat by their activities, potentially affecting bacterial communities. Here, we studied three wood-feeding termite species and found that they influence the composition of the bacterial communities in their surrounding environment. Termite activities have positive effects on Rhizobiales and Actinobacteria abundance and negative effects on the abundance of several ubiquitous genera, such as Bacillus, Clostridium, Corynebacterium, and Staphylococcus. Our results demonstrate that termite galleries harbor unique bacterial communities.


2020 ◽  
Vol 6 (1) ◽  
Author(s):  
Mohanraj Gunasekaran ◽  
Maya Lalzar ◽  
Yehonatan Sharaby ◽  
Ido Izhaki ◽  
Malka Halpern

AbstractSunbirds feed on tobacco tree nectar which contains toxic nicotine and anabasine secondary metabolites. Our aim was to understand the effect of nicotine and anabasine on the gut microbiota composition of sunbirds. Sixteen captive sunbirds were randomly assigned to two diets: artificial nectar either with (treatment) or without (control) added nicotine and anabasine. Excreta were collected at 0, 2, 4 and 7 weeks of treatment and samples were processed for bacterial culture and high-throughput amplicon sequencing of the 16S rRNA gene. The gut microbiome diversity of the treated and control birds changed differently along the seven-week experiment. While the diversity decreased in the control group along the first three samplings (0, 2 and 4 weeks), it increased in the treatment group. The microbiota composition analyses demonstrated that a diet with nicotine and anabasine, significantly changed the birds’ gut microbiota composition compared to the control birds. The abundance of nicotine- and anabasine- degrading bacteria in the excreta of the treated birds, was significantly higher after four and seven weeks compared to the control group. Furthermore, analysis of culturable isolates, including Lactococcus, showed that sunbirds’ gut-associated bacteria were capable of degrading nicotine and anabasine, consistent with their hypothesised role as detoxifying and nutritional symbionts.


Metabolites ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 362
Author(s):  
Jae-kwon Jo ◽  
Seung-Ho Seo ◽  
Seong-Eun Park ◽  
Hyun-Woo Kim ◽  
Eun-Ju Kim ◽  
...  

Halitosis is mainly caused by the action of oral microbes. The purpose of this study was to investigate the differences in salivary microbes and metabolites between subjects with and without halitosis. Of the 52 participants, 22 were classified into the halitosis group by the volatile sulfur compound analysis on breath samples. The 16S rRNA gene amplicon sequencing and metabolomics approaches were used to investigate the difference in microbes and metabolites in saliva of the control and halitosis groups. The profiles of microbiota and metabolites were relatively different between the halitosis and control groups. The relative abundances of Prevotella, Alloprevotella, and Megasphaera were significantly higher in the halitosis group. In contrast, the relative abundances of Streptococcus, Rothia, and Haemophilus were considerably higher in the control group. The levels of 5-aminovaleric acid and n-acetylornithine were significantly higher in the halitosis group. The correlation between identified metabolites and microbiota reveals that Alloprevotella and Prevotella might be related to the cadaverine and putrescine pathways that cause halitosis. This study could provide insight into the mechanisms of halitosis.


2019 ◽  
Vol 20 (1) ◽  
Author(s):  
Robert C. Kaplan ◽  
Zheng Wang ◽  
Mykhaylo Usyk ◽  
Daniela Sotres-Alvarez ◽  
Martha L. Daviglus ◽  
...  

Abstract Background Hispanics living in the USA may have unrecognized potential birthplace and lifestyle influences on the gut microbiome. We report a cross-sectional analysis of 1674 participants from four centers of the Hispanic Community Health Study/Study of Latinos (HCHS/SOL), aged 18 to 74 years old at recruitment. Results Amplicon sequencing of 16S rRNA gene V4 and fungal ITS1 fragments from self-collected stool samples indicate that the host microbiome is determined by sociodemographic and migration-related variables. Those who relocate from Latin America to the USA at an early age have reductions in Prevotella to Bacteroides ratios that persist across the life course. Shannon index of alpha diversity in fungi and bacteria is low in those who relocate to the USA in early life. In contrast, those who relocate to the USA during adulthood, over 45 years old, have high bacterial and fungal diversity and high Prevotella to Bacteroides ratios, compared to USA-born and childhood arrivals. Low bacterial diversity is associated in turn with obesity. Contrasting with prior studies, our study of the Latino population shows increasing Prevotella to Bacteroides ratio with greater obesity. Taxa within Acidaminococcus, Megasphaera, Ruminococcaceae, Coriobacteriaceae, Clostridiales, Christensenellaceae, YS2 (Cyanobacteria), and Victivallaceae are significantly associated with both obesity and earlier exposure to the USA, while Oscillospira and Anaerotruncus show paradoxical associations with both obesity and late-life introduction to the USA. Conclusions Our analysis of the gut microbiome of Latinos demonstrates unique features that might be responsible for health disparities affecting Hispanics living in the USA.


Microbiome ◽  
2021 ◽  
Vol 9 (1) ◽  
Author(s):  
Janis R. Bedarf ◽  
Naiara Beraza ◽  
Hassan Khazneh ◽  
Ezgi Özkurt ◽  
David Baker ◽  
...  

Abstract Background Recent studies suggested the existence of (poly-)microbial infections in human brains. These have been described either as putative pathogens linked to the neuro-inflammatory changes seen in Parkinson’s disease (PD) and Alzheimer’s disease (AD) or as a “brain microbiome” in the context of healthy patients’ brain samples. Methods Using 16S rRNA gene sequencing, we tested the hypothesis that there is a bacterial brain microbiome. We evaluated brain samples from healthy human subjects and individuals suffering from PD (olfactory bulb and pre-frontal cortex), as well as murine brains. In line with state-of-the-art recommendations, we included several negative and positive controls in our analysis and estimated total bacterial biomass by 16S rRNA gene qPCR. Results Amplicon sequencing did detect bacterial signals in both human and murine samples, but estimated bacterial biomass was extremely low in all samples. Stringent reanalyses implied bacterial signals being explained by a combination of exogenous DNA contamination (54.8%) and false positive amplification of host DNA (34.2%, off-target amplicons). Several seemingly brain-enriched microbes in our dataset turned out to be false-positive signals upon closer examination. We identified off-target amplification as a major confounding factor in low-bacterial/high-host-DNA scenarios. These amplified human or mouse DNA sequences were clustered and falsely assigned to bacterial taxa in the majority of tested amplicon sequencing pipelines. Off-target amplicons seemed to be related to the tissue’s sterility and could also be found in independent brain 16S rRNA gene sequences. Conclusions Taxonomic signals obtained from (extremely) low biomass samples by 16S rRNA gene sequencing must be scrutinized closely to exclude the possibility of off-target amplifications, amplicons that can only appear enriched in biological samples, but are sometimes assigned to bacterial taxa. Sequences must be explicitly matched against any possible background genomes present in large quantities (i.e., the host genome). Using close scrutiny in our approach, we find no evidence supporting the hypothetical presence of either a brain microbiome or a bacterial infection in PD brains.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Oksana Kutsyr ◽  
Lucía Maestre-Carballa ◽  
Mónica Lluesma-Gomez ◽  
Manuel Martinez-Garcia ◽  
Nicolás Cuenca ◽  
...  

AbstractThe gut microbiome is known to influence the pathogenesis and progression of neurodegenerative diseases. However, there has been relatively little focus upon the implications of the gut microbiome in retinal diseases such as retinitis pigmentosa (RP). Here, we investigated changes in gut microbiome composition linked to RP, by assessing both retinal degeneration and gut microbiome in the rd10 mouse model of RP as compared to control C57BL/6J mice. In rd10 mice, retinal responsiveness to flashlight stimuli and visual acuity were deteriorated with respect to observed in age-matched control mice. This functional decline in dystrophic animals was accompanied by photoreceptor loss, morphologic anomalies in photoreceptor cells and retinal reactive gliosis. Furthermore, 16S rRNA gene amplicon sequencing data showed a microbial gut dysbiosis with differences in alpha and beta diversity at the genera, species and amplicon sequence variants (ASV) levels between dystrophic and control mice. Remarkably, four fairly common ASV in healthy gut microbiome belonging to Rikenella spp., Muribaculaceace spp., Prevotellaceae UCG-001 spp., and Bacilli spp. were absent in the gut microbiome of retinal disease mice, while Bacteroides caecimuris was significantly enriched in mice with RP. The results indicate that retinal degenerative changes in RP are linked to relevant gut microbiome changes. The findings suggest that microbiome shifting could be considered as potential biomarker and therapeutic target for retinal degenerative diseases.


2021 ◽  
Vol 9 (8) ◽  
pp. 1657
Author(s):  
Anders Esberg ◽  
Linda Johansson ◽  
Ingegerd Johansson ◽  
Solbritt Rantapää Dahlqvist

Rheumatoid arthritis (RA) is the most common autoimmune inflammatory disease, and single periodontitis-associated bacteria have been suggested in disease manifestation. Here, the oral microbiota was characterized in relation to the early onset of RA (eRA) taking periodontal status into consideration. 16S rRNA gene amplicon sequencing of saliva bacterial DNA from 61 eRA patients without disease-modifying anti-rheumatic drugs and 59 matched controls was performed. Taxonomic classification at 98.5% was conducted against the Human Oral Microbiome Database, microbiota functions were predicted using PICRUSt, and periodontal status linked from the Swedish quality register for clinically assessed caries and periodontitis. The participants were classified into three distinct microbiota-based cluster groups with cluster allocation differences by eRA status. Independently of periodontal status, eRA patients had enriched levels of Prevotella pleuritidis, Treponema denticola, Porphyromonas endodontalis and Filifactor alocis species and in the Porphyromonas and Fusobacterium genera and functions linked to ornithine metabolism, glucosylceramidase, beta-lactamase resistance, biphenyl degradation, fatty acid metabolism and 17-beta-estradiol-17-dehydrogenase metabolism. The results support a deviating oral microbiota composition already in eRA patients compared with healthy controls and highlight a panel of oral bacteria that may be useful in eRA risk assessment in both periodontally healthy and diseased persons.


Sign in / Sign up

Export Citation Format

Share Document