scholarly journals Colchicine (a high-priced alkaloid) accumulation and HPTLC quantification in different stages of in vitro developed tuber of Gloriosa superba L.

2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Dipika Rathod ◽  
Jitendriya Panigrahi ◽  
Illa Patel

Abstract Background Gloriosa superba L. belongs to Colchicaceae, which is an important medicinal plant containing high-priced alkaloid colchicines and other potent phytochemicals. Due to its extensive importance at the industrial level, this plant is overexploited. Moreover, indiscriminate harvesting for raw material leads to a decline in the population of this plant in the natural environment. Thus, the present study deals with the optimization of colchicine accumulation from the different intervals of in vitro and in vivo tubers of Gloriosa. Result To obtain in vitro tuberization, shoot tip explants were inoculated on Murashige and Skoog medium prepared with 3 mg/l BA and 0.5 mg/l Kn + 1 mg/l 2, 4-D followed by 2 mg/l BA + 0.2 mg/l NAA. In the high-performance thin-layer chromatography study (HPTLC), the linearity range of colchicine was set at a concentration range of 100–1000 ng/spot with a regression value (r) of 0.99. Its Rf value (0.25) was recorded at 254 nm. The colchicine amount in the in vivo tuber was 7.75 ± 0.25% dry weight, while the nearby amount of 7.7 ± 0.40% dry weight of colchicine was produced from 2 weeks in vitro old tuber. This value was followed by the 4th-week old tuber with 6.35 ± 0.17% dry weight and then a gradual decrease in its accumulation. Conclusion The significant results for the accumulation of colchicine at different stages were observed. Hence, this strategy of colchicine production creates a new possibility for improved production of colchicine under in vitro conditions which will be helpful to various pharmaceutical industries without damaging the plants from the natural environment. Graphical abstract

2019 ◽  
Vol 5 (4) ◽  
pp. 270-277 ◽  
Author(s):  
Vijay Kumar ◽  
Simranjeet Singh ◽  
Ragini Bhadouria ◽  
Ravindra Singh ◽  
Om Prakash

Holoptelea integrifolia Roxb. Planch (HI) has been used to treat various ailments including obesity, osteoarthritis, arthritis, inflammation, anemia, diabetes etc. To review the major phytochemicals and medicinal properties of HI, exhaustive bibliographic research was designed by means of various scientific search engines and databases. Only 12 phytochemicals have been reported including biologically active compounds like betulin, betulinic acid, epifriedlin, octacosanol, Friedlin, Holoptelin-A and Holoptelin-B. Analytical methods including the Thin Layer Chromatography (TLC), High-Performance Thin Layer Chromatography (HPTLC), High-Performance Liquid Chromatography (HPLC) and Liquid Chromatography With Mass Spectral (LC-MS) analysis have been used to analyze the HI. From medicinal potency point of view, these phytochemicals have a wide range of pharmacological activities such as antioxidant, antibacterial, anti-inflammatory, and anti-tumor. In the current review, it has been noticed that the mechanism of action of HI with biomolecules has not been fully explored. Pharmacology and toxicological studies are very few. This seems a huge literature gap to be fulfilled through the detailed in-vivo and in-vitro studies.


Author(s):  
RIDHI JOSHI ◽  
RISHIKESH MEENA ◽  
PREETI MISHRA ◽  
VIDYA PATNI

Objective: A normal-phase high-performance thin-layer chromatography (HPTLC) method has been developed and validated for estimation and quantitation of beta-sitosterol from the methanolic fraction of different plant parts of two medicinally important plants viz. Merremia aegyptia and Merremia dissecta. These plants have been reported to possess antimicrobial, antioxidant, and anti-inflammatory activities. Methods: Chromatographic separation of beta-sitosterol from the methanolic extracts of plant parts of M. aegyptia and M. dissecta was performed on TLC aluminum plates pre-coated with silica gel 60F254 using a suitable mobile phase. The densitometric scanning was done after derivatization at ????-580 nm for ????-sitosterol. Result: Only M. dissecta leaf sample was reported to contain ????-sitosterol (4.6 ng/μl), whereas other samples such as seed, stem, and callus extracts of M. aegyptia and M. dissecta did not showed its presence. Conclusion: The developed HPTLC method is simple, rapid, and precise and can be used for routine analysis and quantification of ????-sitosterol and other useful plant bioactives that are phytopharmaceutically important.


2014 ◽  
Vol 2014 ◽  
pp. 1-7 ◽  
Author(s):  
Ka Chen ◽  
Jia You ◽  
Yong Tang ◽  
Yong Zhou ◽  
Peng Liu ◽  
...  

Chaenomeles speciosafruit is a traditional herb medicine widely used in China. In this study, superfine powder ofC. speciosafruit (SCE), ground by supersonic nitrogen airflow at −140°C, was investigated to assess itsin vitroantioxidant activity andin vivoantiphysical fatigue activity. SCE was homogenous(d<10 μm)and rich in antioxidants like polyphenols, saponins, oleanolic acid, ursolic acid, ascorbic acid, and SOD. According to thein vitroexperiments, SCE displayed promising antioxidant activity with powerful FARP, SC-DPPH, and SC-SAR activities. According to thein vivoexperiments, rats supplemented with SCE had prolonged exhaustive swimming time (57%) compared to the nonsupplemented rats. Meanwhile, compared to the nonsupplemented rats, the SCE-supplemented rats had higher levels of blood glucose and liver and muscular glycogen and lower levels of LA and BUN. Lower MDA, higher antioxidant enzymes (SOD, CAT, and GSH-Px) activities, and upregulated Nrf2/ARE mediated antioxidant enzymes (HO-1, Trx, GCLM, and GCLC) expression were also detected in the supplemented group. This study indicates that SCE is a potent antioxidant and antifatigue agent, and SCE could be a promising raw material for the food and pharmaceutical industries.


2022 ◽  
Vol 8 (1) ◽  
Author(s):  
Flavius Phrangsngi Nonglang ◽  
Abhijeet Khale ◽  
Surya Bhan

Abstract Background The rhizome of Kaempferia galanga (K. galanga) was collected from Meghalaya, India, and its ethanolic extract was obtained by freeze-drying or lyophilization process, which was then assessed for its in vitro anti-oxidant activity and phytochemical characterization using high-performance thin-layer chromatography (HPTLC) and gas chromatography-mass spectroscopy (GCMS). Results In vitro anti-oxidant activity analysis shows an inhibitory concentration (IC50) value of 1.824 mg/mL and 0.307 mg/mL for, α, α-diphenyl-ρ-picrylhydrazyl (DPPH) and 2, 2′-azino-bis-3-ethylbenzothiazoline-6-sulfonic acid (ABTS) assays, respectively. Total polyphenol content (TPC) of 23.55 ± 0.5 mg gallic acid equivalent (GAE)/g dry weight of extract and total flavonoid content (TFC) of 100 ± 1.414 mg rutin equivalents (RE)/g dry weight of extract were found. High-performance thin-layer chromatography (HPTLC) analysis shows the best separation of bands at different retention factor (Rf) values, when employing the solvent system 2-butanol/1-propanol/water in the ratio of 3:1:1 (v/v/v). Gas chromatography-mass spectroscopy (GCMS) analysis confirms the presence and identification of various phytocompounds, with ethyl p-methoxycinnamate identified as the major active compound. Conclusion Freeze-dried ethanolic extract of K. galanga (rhizome) possesses anti-oxidant activity. Ethyl p-methoxycinnamate is present as the major bioactive component (about 94.87% of the total area composition), and since it has very important and diverse medicinal properties, a freeze-drying process (lyophilization) can be utilized for its isolation and extraction.


Molecules ◽  
2021 ◽  
Vol 26 (23) ◽  
pp. 7327
Author(s):  
Faiyaz Shakeel ◽  
Prawez Alam ◽  
Abuzer Ali ◽  
Mohammed H. Alqarni ◽  
Abdullah Alshetaili ◽  
...  

The combined application of clove oil in a lipid nanocarrier opens a promising avenue for bone and joints therapy. In this study, we successfully developed a tunable controlled-release lipid platform for the efficient delivery of clove oil (CO) for the treatment of rheumatoid arthritis (RA). The ultra-small nanostructured lipid carriers co-loaded with CO (CONCs) were developed through an aqueous titration method followed by microfluidization. The CONCs appeared to be spherical (particle size of 120 nm), stable (zeta potential of −27 mV), and entrapped efficiently (84.5%). In toluene:acetone:glacial acetic acid (90:9:1 percent v/v/v) solvent systems, high-performance thin layer chromatography (HPTLC) analysis revealed the primary components in CO as eugenol (RF = 0.58). The CONCs greatly increased the therapeutic impact of CO in both in vitro and in vivo biological tests, which was further supported by excellent antiarthritic action. The CONC had an antiarthritic activity that was slightly higher than neat CO and slightly lower than standard, according to our data. The improved formulation inhibited serum lysosomal enzymes and proinflammatory cytokines while also improving hind leg function. This study provides a proof of concept to treat RA with a new strategy utilizing essential oils via nanodelivery.


2014 ◽  
Vol 23 (2) ◽  
pp. 133-146 ◽  
Author(s):  
Sautrik Basu ◽  
Timir Baran Jha

Chlorophytum borivilianum is a rare, near-endemic high value root crop. The fasciculated roots of the plant have the potential to synthesize valuable bioactives having aphrodisiac, anti stress and immuno modulatory properties. The present investigation describes an alternative protocol for the development of a stable, fast growing, non-transformed root culture system in C. borivilianum and the simultaneous quantitative analysis of total steroidal saponins, amino acids and sugars. Liquid MS fortified with various concentrations and combinations of BA (0.44 - 8.8 µM), Kn (0.23 µM) and NAA (0.27 - 5.4 µM) was effectively used for the development of root culture system. High performance thin layer chromatography (HPTLC) was used for quantification and comparative analysis of bioactives from in vitro and in vivo grown tuberous roots. D. O. I.  http://dx.doi.org/10.3329/ptcb.v23i2.17505 Plant Tissue Cult. & Biotech. 23(2): 133-146, 2013  (December)


Author(s):  
Oumaima Elamin ◽  
Marwa Chraibi ◽  
Saad Koraichi Ibnsouda ◽  
Mohammed Houssaini Iraqui

Objective: The aim of the present study was to express in Mycobacterium smegmatis the clustered mycobacterial genes coding for lycopene synthesis and to investigate the protective properties of lycopene against ultraviolet (UV) irradiation.Methods: The genes, which encode the biogenesis of lycopene in Mycobacterium aurum A+, were introduced into Mycobacterium smegmatis by electroporation. The pigments produced were analyzed by thin layer chromatography, and the absorption spectra were determined. A survival test using UV irradiations was also performed.Results: The transformed Mycobacterium smegmatis were found to synthesize lycopene with important yield (1.41± 3.09 mg/g) and was more resistant to ultraviolet irradiation than non-pigmented strain (p<0.01). Furthermore, cells of M. smegmatis not transformed but coated with lycopene are more resistant to UV than those uncoated (p<0.01).Conclusion: M. smegmatis can form orange colonies on agar plates when it is transformed with the lycopene genes, and the transformants produces 1.41 mg/g (dry weight) of this carotene. Our findings strongly suggest that lycopene has antioxidant activities and prevent the lethal action of UV irradiation on bacterial cells in vivo and in vitro, and deserves further studies considering the amelioration of the production.


2009 ◽  
Vol 92 (5) ◽  
pp. 1343-1348 ◽  
Author(s):  
Barbara Sparzak ◽  
Mirosawa Krauze-Baranowska ◽  
Loretta Pobocka-Olech

Abstract An HPTLC densitometric method was established for the determination of -sitosterol in in vitro cultures of some species of the genus Phyllanthus. Two derivatization reagents commonly used in TLC for the visualization and detection of sterols, namely, anisaldehyde reagent and 5 phosphomolybdic acid, were compared with vanillin reagent. The densitometric quantification of -sitosterol was carried out on HPTLC Si60 F254 plates with the mobile phase chloroformhexanemethanol (65 + 30 + 5, v/v/v) at 525 nm. The method was validated for each derivatization reagent in terms of linearity, precision, repeatability, intra- and interday precision, LOD, and LOQ. The presence of -sitosterol was revealed in all analyzed plant material. The concentrations of -sitosterol determined ranged from 0.48 to 2.75 mg/g (dry weight). In addition, traces of -amyrin were detected in some plant samples.


2020 ◽  
Vol 176 ◽  
pp. 03019
Author(s):  
Marina Shkolnikova ◽  
Olga Chugunova ◽  
Svetlana Ivanova

Many recent researches in vitro and in vivo proved the large therapeutic potency of non-toxic anthocyans in anti-inflammatory, anti-infective, anti-oxidative actions. Anthocyanin is a natural phenolic colorant approved in many countries. A reason why the world market of natural food colorants is reduced is because fruit and berry raw materials are expensive. Yet the fruit and berry raw materials are extracted with significant losses and by-products. This constitutes around 23-45% of the whole amount of berries processes in the Russian Federation. Thus, a priority direction of the food industry is a development of technologies allowing to use precious berry pomace with high bioactive compounds, i.e. anthocyans, organic acids, pectin. The aim of the research is to extract food colorant from the pomace of Vaccínium myrtíllus and Vaccínium vítis-idaéa to identify individual anthocyanin pigments. The food safety and composition of the pomace of Vaccinium myrtillus and Vaccinium vitis-idaea as raw material for food colorant extraction were found. Individual anthocyanin pigments of anthocyanin extracts were identified through the method of high-performance liquid chromatography. Cyanidin-3-galactoside was found in the extracts of berries (85,6 %) and pomaces (81,2%) of Vaccinium vitis-idaea. Fifteen compounds were identified in the extracts of Vaccinium myrtillus. The major ones were delphinidin-3-glucoside (13,4 %), delphinidin-3-galactoside (12,4 %), and cyanidin-3-glucoside for the fresh berries. As for the pigments of its pomaces, they were delphinidin-3-glucoside (15,3 %), delphinidin-3-galactoside (14,7 %), and delphinidin-3-arabinoside (10,5 %). Hence, there are more anthocyanin pigments in the extracts of pomaces, than in those of the fresh berries with identical compounds – 24,7 % more for Vaccinium myrtillus and 11,1 % more for Vaccinium myrtillus. The possibility to extract anthocyanin pigments from by-products of the local fruit and berry raw materials – i.e. of Vaccinium myrtillus and Vaccinium vitis-idae ones – and identify them is discussed.


2020 ◽  
Vol 18 (1) ◽  
pp. 764-777
Author(s):  
Sumaira Naz ◽  
Muhammad Zahoor ◽  
Muhammad Naveed Umar ◽  
Saad Alghamdi ◽  
Muhammad Umar Khayam Sahibzada ◽  
...  

AbstractThioureas and their derivatives are organosulfur compounds having applications in numerous fields such as organic synthesis and pharmaceutical industries. Symmetric thiourea derivatives were synthesized by the reaction of various anilines with CS2. The synthesized compounds were characterized using the UV-visible and nuclear magnetic resonance (NMR) spectroscopic techniques. The compounds were screened for in vitro inhibition of α-amylase, α-glucosidase, acetylcholinesterase (AChE), and butyrylcholinesterase (BuChE) enzymes and for their antibacterial and antioxidant potentials. These compounds were fed to Swiss male albino mice to evaluate their toxicological effects and potential to inhibit glucose-6-phosphatase (G6Pase) inhibition. The antibacterial studies revealed that compound 4 was more active against the selected bacterial strains. Compound 1 was more active against 2,2-diphenyl-1-picrylhydrazyl and 2,2’-Azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) free radicals, AChE, BuChE, and α-glucosidase. Compound 2 was more potent against α-amylase and G6Pase. Toxicity studies showed that compound 4 is safe as it exerted no toxic effect on any of the hematological and biochemical parameters or on liver histology of the experimental animals at any studied dose rate. The synthesized compounds showed promising antibacterial and antioxidant potential and were very active (both in vitro and in vivo) against G6Pase and moderately active against the other selected enzymes used in this study.


Sign in / Sign up

Export Citation Format

Share Document