Predicting the seismic implications of salt anisotropy using numerical simulations of halite deformation

Geophysics ◽  
2000 ◽  
Vol 65 (4) ◽  
pp. 1272-1280 ◽  
Author(s):  
Daniel G. Raymer ◽  
Andréa Tommasi ◽  
J‐Michael Kendall

In the past, the potential for seismic anisotropy in salt structures and its effect on their seismic imaging has received little attention. We consider the plausibility of salt anisotropy through linked numerical studies of salt deformation and its seismic consequences. Numerical models are used to predict lattice preferred orientations (LPOs) in halite polycrystalline aggregates subjected to axial extension and simple shear. The elastic constants for the deformed polycrystalline aggregate are then calculated. Simple models representing a salt sill and the stem of a diapir are created using these elastic constants. Ray tracing is used to investigate the effects of halite LPO on the propagation of seismic waves. The results suggest that salt anisotropy can cause significant traveltime effects and could lead to significant errors in seismic interpretation in salt environments if this anisotropy is ignored. We also investigate potential amplitude variation with offset and azimuth (AVOA) for the reflection from the top and bottom of an anisotropic salt sill. Ray paths with a shear‐wave leg within the salt display strong AVOA effects with a clear four‐fold symmetry.

Geophysics ◽  
1998 ◽  
Vol 63 (2) ◽  
pp. 686-691 ◽  
Author(s):  
Gerald H. F. Gardner ◽  
Anat Canning

A common midpoint (CMP) gather usually provides amplitude variation with offset (AVO) information by displaying the reflectivity as the peak amplitude of symmetrical deconvolved wavelets. This puts a reflection coefficient R at every offset h, giving a function R(h). But how do we link h with the angle of incidence, θ, to get the reflectivity function, R(θ)? This is necessary for amplitude versus angle-of-incidence (AVA) analysis. One purpose of this paper is to derive formulas for this linkage after velocity-independent dip-moveout (DMO), done by migrating radial sections, and prestack zero-offset migration. Related studies of amplitude-preserving DMO in the past have dealt with constant-offset DMO but have not given the connection between offset and angle of incidence after processing. The results in the present paper show that the same reflectivity function can be extracted from the imaged volume whether it is produced using radial-trace DMO plus zero-offset migration, constant-offset DMO plus zero-offset migration, or directly by prestack, common-offset migration. The data acquisition geometry for this study consists of parallel, regularly spaced, multifold lines, and the velocity of propagation is constant. Events in the data are caused by an arbitrarily oriented 3-D plane reflector with any reflectivity function. The DMO operation transforms each line of data (m, h, t), i.e., midpoint, half-offset, and time, into an (m1, k, t1) space by Stolt-migrating each radial-plane section of the data, 2h = Ut, with constant velocity U/2. Merging the (m1, k, t1) spaces for all the lines forms an (x, y, k, t1) space, where the first two coordinates are the midpoint location, the third is the new half-offset, and the fourth is the time. Normal moveout (NMO) plus 3-D zero-offset migration of the subspace (x, y, t1) for each k creates a true-amplitude imaged volume (X, Y, k, T). Each peak amplitude in the volume is a reflection coefficient linked to an angle of incidence.


Geophysics ◽  
2016 ◽  
Vol 81 (3) ◽  
pp. N17-N29 ◽  
Author(s):  
Shahpoor Moradi ◽  
Kristopher A. Innanen

Anelastic properties of reservoir rocks are important and sensitive indicators of fluid saturation and viscosity changes due (for instance) to steam injection. The description of seismic waves propagating through viscoelastic continua is quite complex, involving a range of unique homogeneous and inhomogeneous modes. This is true even in the relatively simple theoretical environment of amplitude variation with offset (AVO) analysis. For instance, a complete treatment of the problem of linearizing the solutions of the low-loss viscoelastic Zoeppritz equations to obtain an extended Aki-Richards equations (one that is in accord with the appropriate complex Snell’s law) is lacking in the literature. Also missing is a clear analytical path allowing such forms to be reconciled with more general volume scattering pictures of viscoelastic seismic wave propagation. Our analysis, which provides these two missing elements, leads to approximate reflection and transmission coefficients for the P- and type-I S-waves. These involve additional, complex terms alongside those of the standard isotropic-elastic Aki-Richards equations. The extra terms were shown to have a significant influence on reflection strengths, particularly when the degree of inhomogeneity was high. The particular AVO forms we evaluated were finally shown to be special cases of potentials for volume scattering from viscoelastic inclusions.


Geophysics ◽  
1993 ◽  
Vol 58 (5) ◽  
pp. 736-740 ◽  
Author(s):  
Serguei A. Shapiro ◽  
Holger Zien

Angle (or offset) dependent effects of scattering in finely layered media can be observed and analyzed or must be compensated for in vertical seismic profiling data (VSP‐ data), crosshole observations, or seismic amplitude variation with offset (AVO) measurements. Moreover, the adequate description of multiple scattering is important for the study of seismic attenuation in sediments and for the design of inversion procedures.


Geophysics ◽  
2012 ◽  
Vol 77 (6) ◽  
pp. B295-B306 ◽  
Author(s):  
Alexander Duxbury ◽  
Don White ◽  
Claire Samson ◽  
Stephen A. Hall ◽  
James Wookey ◽  
...  

Cap rock integrity is an essential characteristic of any reservoir to be used for long-term [Formula: see text] storage. Seismic AVOA (amplitude variation with offset and azimuth) techniques have been applied to map HTI anisotropy near the cap rock of the Weyburn field in southeast Saskatchewan, Canada, with the purpose of identifying potential fracture zones that may compromise seal integrity. This analysis, supported by modeling, observes the top of the regional seal (Watrous Formation) to have low levels of HTI anisotropy, whereas the reservoir cap rock (composite Midale Evaporite and Ratcliffe Beds) contains isolated areas of high intensity anisotropy, which may be fracture-related. Properties of the fracture fill and hydraulic conductivity within the inferred fracture zones are not constrained using this technique. The predominant orientations of the observed anisotropy are parallel and normal to the direction of maximum horizontal stress (northeast–southwest) and agree closely with previous fracture studies on core samples from the reservoir. Anisotropy anomalies are observed to correlate spatially with salt dissolution structures in the cap rock and overlying horizons as interpreted from 3D seismic cross sections.


2016 ◽  
Vol 710 ◽  
pp. 409-414 ◽  
Author(s):  
Gianfranco De Matteis ◽  
Giuseppe Brando

This paper aims at providing an overview on the current state of the art and on possible future developments concerning the component method implementation for the classification of beam-to-column joints belonging to aluminum moment resisting frames.After a brief discussion on the component method theoretical bases, developed in the past to give a feasible calculation procedure for steel joints, recent experimental and numerical studies, carried out for investigating some aluminum components, are presented and discussed. In particular strengths and weaknesses of the current knowledge are put into evidence, also in light of the peculiarities that make aluminum alloys different from steel. The launch of new research fields, aimed at pursuing an update of the current codes dealing with aluminum structures, is therefore proposed.


2016 ◽  
Vol 65 (3) ◽  
pp. 736-746 ◽  
Author(s):  
Chao Xu ◽  
Jianxin Wei ◽  
Bangrang Di

Author(s):  
Yangbo Deng ◽  
Fengmin Su ◽  
Chunji Yan

The solar energy converter in Concentrated Solar Power (CSP) system, applies the solid frame structure of the ceramic foams to receive the concentrated solar radiation, convert it into thermal energy, and heat the air flow through the ceramic foams by convection heat transfer. In this paper, first, the pressure drops in the studied ceramic foams were measured under all kinds of flow condition. Based on the experimental results, an empirical numerical model was built for the air flow through ceramic foams. Second, a 3-D numerical model was built, for the receiving and conversion of the solar energy in the ceramic foams of the solar energy converter. Third, applying two aforementioned numerical models, the numerical studies of the thermal performance were carried out, for the solar energy converter filled with the ceramic foams, and results show that the structure parameters of the ceramic foams, the effective reflective area and the solar radiation intensity of the solar concentrator, have direct impacts on the absorptivity and conversion efficiency of the solar energy in the solar energy converter. And the results of the numerical studies are found to be in reasonable agreement with the experimental measurements. This paper will provide a reference for the design and manufacture of the solar energy converter with the ceramic foams.


2013 ◽  
Vol 14 (3) ◽  
pp. 801-818 ◽  
Author(s):  
C. Cherubini ◽  
S. Filippi

AbstractThe “analogue gravity formalism”, an interdisciplinary theoretical scheme developed in the past for studying several non relativistic classical and quantum systems through effective relativistic curved space-times, is here applied to largely de-formable elastic bodies described by the nonlinear theory of solid mechanics. Assuming the simplest nonlinear constitutive relation for the elastic material given by a Kirchhoff-St Venant strain-energy density function, it is possible to write for the perturbations an effective space-time metric if the deformation is purely longitudinal and depends on one spatial coordinate only. Theoretical and numerical studies of the corresponding dynamics are performed in selected cases and physical implications of the results obtained are finally discussed.


1997 ◽  
Vol 40 (3) ◽  
Author(s):  
L. Margheriti ◽  
C. Nostro ◽  
A. Amato ◽  
M. Cocco

Anisotropy is a common property of the Earth's crust and the upper mantle; it is related to the strain field of the medium and therefore to geodynamics. In this paper we describe the different possible origins of anisotropic behavior of the seismic waves and the seismological techniques used to define anisotropic bodies. In general it is found that the fast polarization direction is parallel to the absolute plate motion in cratonic areas, to the spreading direction near rifts or extensional zones, and to the main structural features in transpressive regimes. The delay times between fast and slow waves reflect the relative strength and penetration at depth of the deformation field. The correspondence between surface structural trends and anisotropy in the upper mantle, found in many regions of the world, strongly suggest that orogenic processes involve not only the shallow crust but the entire lithosphere. Recently in Italy both shear wave splitting analysis and Pn inversion were applied to define the trend of seismic anisotropy. Along the Northern Appeninic arc fast directions follow the strike of the arc (i.e., parallel to the strike of the Miocene-Pleistocene compressional features), whereas in the Tyrrhenian zone fast directions are about E-W SW-NE; parallel to the post-Miocene extension that is thought to have reoriented the mantle minerals fabric in the astenosphere.


Sign in / Sign up

Export Citation Format

Share Document