Forward modeling of gravity data using geostatistically generated subsurface density variations

Geophysics ◽  
2016 ◽  
Vol 81 (5) ◽  
pp. G81-G94 ◽  
Author(s):  
Geoff Phelps

Using geostatistical models of density variations in the subsurface, constrained by geologic data, forward models of gravity anomalies can be generated by discretizing the subsurface and calculating the cumulative effect of each cell (pixel). The results of such stochastically generated forward gravity anomalies can be compared with the observed gravity anomalies to find density models that match the observed data. These models have an advantage over forward gravity anomalies generated using polygonal bodies of homogeneous density because generating numerous realizations explores a larger region of the solution space. The stochastic modeling can be thought of as dividing the forward model into two components: that due to the shape of each geologic unit and that due to the heterogeneous distribution of density within each geologic unit. The modeling demonstrates that the internally heterogeneous distribution of density within each geologic unit can contribute significantly to the resulting calculated forward gravity anomaly. Furthermore, the stochastic models match observed statistical properties of geologic units, the solution space is more broadly explored by producing a suite of successful models, and the likelihood of a particular conceptual geologic model can be compared. The Vaca Fault near Travis Air Force Base, California, can be successfully modeled as a normal or strike-slip fault, with the normal fault model being slightly more probable. It can also be modeled as a reverse fault, although this structural geologic configuration is highly unlikely given the realizations we explored.

1992 ◽  
Vol 129 (4) ◽  
pp. 411-419 ◽  
Author(s):  
M. C. Dentith ◽  
A. Trench ◽  
B. J. Bluck

AbstractPreviously published models of gravity anomalies across the Highland Boundary Fault in western Scotland interpret this structure as a high-angle reverse fault. These gravity anomalies have been re-interpreted in the light of more extensive gravity data now available, and new density data from the Highland Border Complex. The new data suggest that earlier interpretations have overestimated the fault anomaly and used over-simplified density models. New gravity models of the Highland Boundary Fault Zone are presented which show that the interface between the Dalradian and Highland Border Complex dips to the northwest at an angle of about 20°. We interpret the contact between these two formations as a thrust fault. The interface between the Highland Border Complex and the Lower Old Red Sandstone is shown to be vertical as suggested by surface geology, with the latter rocks a few hundred metres thick.


2018 ◽  
Vol 2 (1) ◽  
pp. 34
Author(s):  
Marsellei Justia ◽  
Muhammad Fikri H Hiola ◽  
Nur Baiti Febryana S

<p class="Abstract">Research has been conducted to identify the Walanae Fault, coordinates 4–6 S and 118-120 E using anomalous gravity data. This research uses data measurement of Topography and the Free Air Anomaly from the TOPEX/Poseidon satellite. Then the authors processed to obtain the bouguer anomalies and made modeling by using the Surfer 10. The authors used the Second Vertical Derivative (SVD) with filter Elkins of Moving Average then analyze the graph of the SVD. The results shows the value of the residual anomaly in the north of fault is 25.21 mGal, in the middle occur range 17.67 mGal to 24.98 mGal and 30,376 mGal in the south of fault. The authors indicates the existence of a difference between the gravity between the Walanae Fault with surrounding geologic. From these results also show that Walanae Fault has a reverse fault mechanism in the northern part and the normal fault mechanism in the middle to the south, the authors conclude that the Walanae Fault is divided into two segments, that is the northern and the southern segment.</p>


2016 ◽  
Vol 9 (1) ◽  
pp. 1
Author(s):  
Anjar Pranggawan Azhari ◽  
Sukir Maryanto ◽  
Arief Rachmansyah

Gravity survey has been acquired by Gravimeter Lacoste &amp; Romberg G-1035 at Blawan-Ijen geothermal area. It was a focusing study from previous research. The residual Bouguer anomaly data was obtain after applying gravity data reduction, reduction to horizontal plane, and upward continuation. Result of Bouguer anomaly interpretation shows occurrence of new faults and their relative movement. Blawan fault (F1), F2, F3, and F6 are normal fault. Blawan fault is main fault controlling hot springs at Blawan-Ijen geothermal area. F4 and F5 are oblique fault and forming a graben at Banyupahit River. F7 is reverse fault. Subsurface model shows that Blawan-Ijen geothermal area was dominated by the Ijen caldera forming ignimbrite (ρ1=2.670 g/cm3), embedded shale and sand (ρ2=2.644 g/cm3) as Blawan lake sediments, magma intrusion (ρ3=2.814 g/cm3 &amp; ρ7=2.821 g/cm3), andesite rock (ρ4=2.448 g/cm3) as geothermal reservoir, pyroclastic air fall deposits (ρ5=2.613 g/cm3) from Mt. Blau, and lava flow (ρ6=2.890 g/cm3).


Geophysics ◽  
2018 ◽  
Vol 83 (5) ◽  
pp. G79-G92 ◽  
Author(s):  
Geoff Phelps ◽  
Celine Scheidt ◽  
Jef Caers

ABSTRACT We have explored ways to integrate alternative geologic interpretations into the modeling of gravity data. These methods are applied to the Vaca Fault east of Fairfield, California, USA, where the structure across the fault is in question, and the Vaca Fault is used as a case study to demonstrate the method. The Vaca Fault is modeled using gravity data collected along a 10 km line perpendicular to the strike of the fault. Of particular interest is how the gravity data might inform on the dip of the Vaca Fault and thickness of the nonmarine section and whether spatial autocorrelation of density internal to the geologic units significantly influences the resulting gravity anomaly. We approach these questions by creating a suite of structural geologic models, which we then populate with geostatistically generated densities and from which the respective synthetic gravity anomalies are calculated. We perform distance-based generalized sensitivity analysis to identify which model inputs most leverage the calculated gravity anomaly. We then use multidimensional scaling to transform the gravity anomalies into a metric space and estimate the posterior probabilities of each structural geologic model using a Bayesian approach. We find that the gravity anomalies are particularly sensitive to zones of autocorrelated density values generated from geostatistical modeling. The structural geologic models most likely to produce gravity anomalies that match the observed data are the moderately dipping normal faults, 45° and 60°, although the probability that the fault dips more steeply, including in a strike slip or reverse fault orientation, is approximately 30%. The probability of a thicker nonmarine unit is 67%, more probable than a thinner nonmarine unit. This suggests that the Vaca Fault dips moderately to the east and truncates a thicker nonmarine unit, but that any further process modeling should include alternatives of the geologic structures.


Water ◽  
2021 ◽  
Vol 13 (9) ◽  
pp. 1310
Author(s):  
Hajer Azaiez ◽  
Hakim Gabtni ◽  
Mourad Bédir

Electric resistivity sounding and tomography, as well as electromagnetic sounding, are the classical methods frequently used for hydrogeological studies. In this work, we propose the development and implementation of an original integrated approach using the unconventional hydro–geophysical methods of gravity and seismic reflection for the fast, large–scale characterization of hydrogeological potential using the Ain El Beidha plain (central Tunisia) as an analogue. Extending the values of vintage petroleum seismic reflection profiles and gravity data, in conjunction with available geological and hydrogeological information, we performed an advanced analysis to characterize the geometry of deep tertiary (Oligocene and Eocene) aquifers in this arid area. Residual and tilt angle gravity maps revealed that most gravity anomalies have a short wavelength. The study area was mainly composed of three major areas: the Oued Ben Zitoun and Ain El Beidha basins, which are both related to negative gravity trends corresponding to low–density subsiding depocenters. These basins are separated by an important NE–SW trend called “El Gonna–J. El Mguataa–Kroumet Zemla” gravity high. Evaluation of the superposition of detected lineaments and Euler deconvolution solutions’ maps showed several NE–SW and N–S relay system faults. The 3D density inversion model using a lateral and vertical cutting plane suggested the presence of two different tectonic styles (thin VS thick). Results from the gravity analysis were in concordance with the seismic analysis. The deep Oligocene and Eocene seismic horizons were calibrated to the hydraulic wells and surrounding outcrops. Oligocene and Eocene geological reservoirs appear very fractured and compartmented. The faulting network also plays an important role in enhancing groundwater recharge process of the Oligocene and Eocene aquifers. Finally, generated isochron maps provided an excellent opportunity to develop future comprehensive exploration surveys over smaller and more favorable areas’ sub–basins.


2021 ◽  
Author(s):  
◽  
Alistair Stronach

<p><b>New Zealand’s capital city of Wellington lies in an area of high seismic risk, which is further increased by the sedimentary basin beneath the Central Business District (CBD). Ground motion data and damage patterns from the 2013 Cook Strait and 2016 Kaikōura earthquakes indicate that two- and three-dimensional amplification effects due to the Wellington sedimentary basin may be significant. These effects are not currently accounted for in the New Zealand Building Code. In order for this to be done, three-dimensional simulations of earthquake shaking need to be undertaken, which requires detailed knowledge of basin geometry. This is currently lacking, primarily because of a dearth of deep boreholes in the CBD area, particularly in Thorndon and Pipitea where sediment depths are estimated to be greatest.</b></p> <p>A new basin depth map for the Wellington CBD has been created by conducting a gravity survey using a modern Scintrex CG-6 gravity meter. Across the study area, 519 new high precision gravity measurements were made and a residual anomaly map created, showing a maximum amplitude anomaly of -6.2 mGal with uncertainties better than ±0.1 mGal. Thirteen two-dimensional geological profiles were modelled to fit the anomalies, then combined with existing borehole constraints to construct the basin depth map. </p> <p>Results indicate on average greater depths than in existing models, particularly in Pipitea where depths are interpreted to be as great as 450 m, a difference of 250 m. Within 1 km of shore depths are interpreted to increase further, to 600 m. The recently discovered basin bounding Aotea Fault is resolved in the gravity data, where the basement is offset by up to 13 m, gravity anomaly gradients up to 8 mGal/km are observed, and possible multiple fault strands identified. A secondary strand of the Wellington Fault is also identified in the north of Pipitea, where gravity anomaly gradients up to 18 mGal/km are observed.</p>


Geosciences ◽  
2021 ◽  
Vol 11 (10) ◽  
pp. 398
Author(s):  
Federico Cella ◽  
Rosa Nappi ◽  
Valeria Paoletti ◽  
Giovanni Florio

Sediments infilling in intermontane basins in areas with high seismic activity can strongly affect ground-shaking phenomena at the surface. Estimates of thickness and density distribution within these basin infills are crucial for ground motion amplification analysis, especially where demographic growth in human settlements has implied increasing seismic risk. We employed a 3D gravity modeling technique (ITerative RESCaling—ITRESC) to investigate the Fucino Basin (Apennines, central Italy), a half-graben basin in which intense seismic activity has recently occurred. For the first time in this region, a 3D model of the Meso-Cenozoic carbonate basement morphology was retrieved through the inversion of gravity data. Taking advantage of the ITRESC technique, (1) we were able to (1) perform an integration of geophysical and geological data constraints and (2) determine a density contrast function through a data-driven process. Thus, we avoided assuming a priori information. Finally, we provided a model that honored the gravity anomalies field by integrating many different kinds of depth constraints. Our results confirmed evidence from previous studies concerning the overall shape of the basin; however, we also highlighted several local discrepancies, such as: (a) the position of several fault lines, (b) the position of the main depocenter, and (c) the isopach map. We also pointed out the existence of a new, unknown fault, and of new features concerning known faults. All of these elements provided useful contributions to the study of the tectono-sedimentary evolution of the basin, as well as key information for assessing the local site-response effects, in terms of seismic hazards.


2021 ◽  
Vol 6 (24) ◽  
pp. 213-225
Author(s):  
Shazad Jamal Jalal ◽  
Tajul Ariffin Musa ◽  
Ami Hassan Md Din ◽  
Wan Anom Wan Aris

Gravity data and computing gravity anomalies are regarded as vital for both geophysics and physical geodesy fields. The mountainous areas of Iraq are characterized by the lack of regional gravity data because gravity surveys are rarely performed in the past four decades due to the Iraq-Iran war and the internal unstable political situation of this particular region. In addition, the formal map of the available terrestrial gravity which was published by the French Database of Bureau Gravimetrique International (International Gravimetric Bureau-in English) (BGI), introduces Iraq and the study area as a remote area and in white color because of the unavailability of gravity data. However, a dense and local (not regional) gravity data is available which was conducted by geophysics researchers 13 years ago. Therefore, the regional gravity survey of 160 gravity points was performed by the authors at an average 11 km apart, which was covers the whole area of Sulaymaniyah Governorate (part of the mountainous areas of Iraq). In spite of Although the risk of mine fields within the study area, suitable safe routes as well as a helicopter was used for the gravity survey of several points on the top of mountains. The survey was conducted via Lacoste and Romberg geodetic gravimeter and GPS handheld. The objective of the study is to determine and map the gravity anomalies for the entire study area, the data of which would assist different geosciences applications.


1994 ◽  
Vol 37 (6) ◽  
Author(s):  
G. C. P. King ◽  
R. M. Wood

The character of the hydrological changes that follow major earthquakes has been investigated and found to be critically dependent on the style of fault displacement. In areas where fracture-flow in the crystalline crust communicates uninterrupted with the surface the most significant response is found to accompany major normal fault earthquakes. Increases in spring and river discharges peak a few days after the earthquake and typically excess flow is sustained for a period of 4 12 months. Rainfall equivalent discharges, have been found to ceed 100 mm close to the fault and remain above 10 mm at distances greater than 50 km. The total volume of water released in two M 7 normal fault earthquakes in the Western U.S.A. was 0.3-0.5 km3. In contrast, hydroIogical changes accompanying reverse fault earthquakes are either undetected or else involve falls in well-levels and spring-flows. The magnitude and distribution of the water-discharge for these events is compared with deformation models calibrated from seismic and geodetic information, and found to correlate with the crustal volume strain down to a depth of at least 5 km. Such relatively rapid drainage is only possible if the fluid was formerly contained in high aspect ratio fissures interconnected throughout much of the seismogenic upper crust. The rise and decay times of the discharge are shown to be critically dependent on crack widths, for which the «characteristic» or dominant cracks cannot be wider than 0.03 mm. These results suggest that fluid-filled cracks are ubiquitous throughout the brittle continental crust, and that these cracks open and close through the earthquake cycle. Seismohydraulic fluid flows have major implications for our understanding of the mechanical and chemical behaviour of crustal rocks, of the tectonic controls of fluid flow associated with petroleum migration, hydrothermal mineralisation and a significant hazard for underground waste disposal.


1997 ◽  
Vol 40 (5) ◽  
Author(s):  
P. Capuano ◽  
G. Florio ◽  
P. Gasparini

The results of about 120 magnetotelluric soundings carried out in the Vulsini, Vico and Sabatini volcanic areas were modeled along with Bouguer and aeromagnetic anomalies to reconstruct a model of the structure of the shallow (less than 5 km of depth) crust. The interpretations were constrained by the information gathered from the deep boreholes drilled for geothermal exploration. MT and aeromagnetic anomalies allow the depth to the top of the sedimentary basement and the thickness of the volcanic layer to be inferred. Gravity anomalies are strongly affected by the variations of morphology of the top of the sedimentary basement, consisting of a Tertiary flysch, and of the interface with the underlying Mesozoic carbonates. Gravity data have also been used to extrapolate the thickness of the neogenic unit indicated by some boreholes. There is no evidence for other important density and susceptibility heterogeneities and deeper sources of magnetic and/or gravity anomalies in all the surveyed area.


Sign in / Sign up

Export Citation Format

Share Document