Generating direct-S modes with simple, low-cost, widely available seismic sources

2014 ◽  
Vol 2 (2) ◽  
pp. SE1-SE15 ◽  
Author(s):  
Bob A. Hardage ◽  
Donald Wagner

More robust seismic interpretation can be done when an interpretation project uses both compressional (P) and shear (S) data rather than using only one seismic mode, whether that mode be a P mode or an S mode. Unfortunately, this fundamental interpretation principle is frustrated by the cost and difficulty of deploying S-wave sources and by the limited availability of direct-S sources. We introduce a new seismic interpretation option based on direct-P and direct-S modes generated by vertical-force sources. To explain the potential of this new method for acquiring direct-S data, we evaluate real-data examples that illustrate the physics of P and S body-wave radiations generated at vertical-force-source stations. First, a 3D model of direct-S radiation by a vertical-force source is tested. Next, we discuss a field experiment in which a horizontal vibrator create a series of radially oriented SV displacements at small azimuth increments to simulate the full-azimuth distribution of SV displacements created by a vertical vibrator. The resulting data are recorded by a VSP seismic array and show that for a far-field sensor, some source-generated SV displacements are received as a radial-S wavefield and other SV displacements are received as a transverse-S wavefield. We use data from a walkaround VSP to create map views of direct-P and direct-S radiations from a vertical vibrator. We then use data from a walkaway VSP to illustrate cross-section views of the illumination lobes of direct-P and direct-S propagating into the subsurface from a vertical-vibrator source station.

2020 ◽  
Vol 6 (3) ◽  
pp. 446-458
Author(s):  
Marwa Mohammed Bori ◽  
Zahraa Ezzulddin Hussein

As known Close range photogrammetry represents one of the most techniques to create precise 3D model. Metric camera, digital camera, and Laser scanning can be exploited for the photogrammetry with variety level of cost that may be high. In this study, the cost level is taken in to consideration to achieve balance between the cost and the obtained accuracy. This study aims to detect potential of low cost tools for creating 3D model in terms of obtained accuracy and details and comparing it with corresponding studies. Smart phone camera is the most available for everyone; this gave the motivation for use in this study. In addition, Google Earth was used to integrate the 3D model produced from all sides including the roof.  Then, two different types of the mobile camera were used in addition to the DSLR camera (Digital Single Lens Reflex) for comparison and analysis purposes. Thus, this research gave flexibility in work and low cost resulting from replacement the metric camera with the smart camera and the unmanned aerial vehicle (UAV) with Google Earth data. Mechanism of the work can be summarized in four steps. Firstly, photogrammetry planning to determine suitable baselines from object and location of targets that measured using GPS and Total station devices. Secondly, collect images using close range photogrammetry technique. Thirdly, processing step to create the 3D model and integrated with Google Earth images using the Agi Photoscan software. Finally, Comparative and evaluation stage to derive the accuracy and quality of the model obtained from this study using statistical analysis method. Regarding this Study, University of Baghdad, central library was selected as the case study. The results of this paper show that the low cost 3D model resulted from integrating  phone and Google Earth images gave suitable result with mean accuracy level reached to about less than 5 meters compared with DSLR camera result, this may be used for several applications such as  culture heritage and architecture documentation.


2016 ◽  
Vol 41 (2) ◽  
pp. 210-214 ◽  
Author(s):  
Amaia Hernandez ◽  
Edward Lemaire

Background and Aim: Prosthetic CAD/CAM systems require accurate 3D limb models; however, difficulties arise when working from the person’s socket since current 3D scanners have difficulties scanning socket interiors. While dedicated scanners exist, they are expensive and the cost may be prohibitive for a limited number of scans per year. A low-cost and accessible photogrammetry method for socket interior digitization is proposed, using a smartphone camera and cloud-based photogrammetry services. Technique: 15 two-dimensional images of the socket’s interior are captured using a smartphone camera. A 3D model is generated using cloud-based software. Linear measurements were comparing between sockets and the related 3D models. Discussion: 3D reconstruction accuracy averaged 2.6 ± 2.0 mm and 0.086 ± 0.078 L, which was less accurate than models obtained by high quality 3D scanners. However, this method would provide a viable 3D digital socket reproduction that is accessible and low-cost, after processing in prosthetic CAD software. Clinical relevance The described method provides a low-cost and accessible means to digitize a socket interior for use in prosthetic CAD/CAM systems, employing a smartphone camera and cloud-based photogrammetry software.


2021 ◽  
Vol 7 ◽  
Author(s):  
Antonios A. Katsamakas ◽  
Miro Chollet ◽  
Stefan Eyyi ◽  
Michalis F. Vassiliou

This paper presents an experimental study of a low-cost seismic isolator that can be used for the protection of residential structures in low-income countries. The isolator is based on mortar-filled, used tennis spheres, rolling on flat or spherical concrete surfaces. The tennis spheres serve as permanent, spherical molds to cast mortar, and they are not removed after casting. The thin rubber shell of the tennis sphere offers increased damping and reduces stress concentrations at the contact areas. At the same time, this procedure creates a promising solution for the re-use of tennis spheres. Using a closely-spaced grid of such spheres may allow for avoiding the diaphragm slab at the isolation level, or reducing its thickness. Avoiding the cost of this additional, heavily reinforced isolation slab is crucial for making seismically isolated low-rise dwellings economically feasible in low-income regions of the globe. Initially, the tennis isolators were subjected to monotonic uniaxial compression to examine their behavior under vertical loading. Different mixes and low-cost reinforcement approaches to increase their strength were tested. Subsequently, cyclic tests were performed to obtain the lateral force-displacement diagram of the isolation system. The effects of the geometry of the rolling surface (i.e., flat or concave) and of the applied compressive load (i.e., 2.08, 3.23, 4.74, or 8 kN/sphere) on the cyclic behavior were investigated. It was found that the restoring force of such systems mainly originates from the curvature of the concrete surface. However, the vertical motion induced by the compressed sphere and its local casting imperfections is not negligible. When surface imperfections become significant, the force-displacement loops deviate from the bilinear curves that a rigid-body model suggests. When the spheres are properly cast, they experience zero damage even under 8 kN of compressive force, and their loops have a bilinear form. For the tested configurations, the rolling friction (defined as the ratio of lateral to vertical force at zero displacement) was in the range of 4.7–7.2%, thus suitable for seismic isolation applications. The cost of the tested tennis ball isolators was 0.05 $ per sphere.


2014 ◽  
Vol 2 (2) ◽  
pp. SE17-SE27 ◽  
Author(s):  
Bob A. Hardage ◽  
Diana Sava ◽  
Don Wagner

We show that SV-P reflectivity closely matches P-SV reflectivity; thus, in concept, an SV-P image should be as informative and as valuable as a P-SV image for seismic interpretation purposes. If the dip of rock layering is not severe, the length of the SV raypath involved in SV-P imaging is approximately the same as the length of the SV raypath in P-SV imaging; thus, the important lithology-sensitive [Formula: see text] velocity ratio determined with SV-P data should be approximately the same as the [Formula: see text] velocity ratio determined with P-SV data. We compare velocities used in P-SV imaging and SV-P imaging to emphasize the equivalence of P-SV and SV-P stacking velocities, and therefore seismic-derived [Formula: see text] velocity ratios, obtained with both converted-wave modes. We compare images of P-SV and SV-P data to illustrate the high-quality images that can be made with a SV-P mode. The SV-P data used in these comparisons are recorded by vertical geophones, whereas the P-SV data are recorded by horizontal geophones. In the real-data examples we present, the energy sources that produced the downgoing SV wavefield are vertical-force sources, not horizontal-force sources. A vertical vibrator is used in the first case, and shot-hole explosives are used in the second case. The interpretation technology described here thus introduces the option of extracting valuable S-wave information and images from legacy P-wave data generated by a vertical-force source and recorded with only 1C vertical geophones. We discuss several principles involved in constructing SV-P images from VSP data because of the importance that VSP technology has in calibrating depth-based geology with surface-recorded SV-P data. We emphasize that cautious and attentive data processing procedures are required to segregate SV-P reflections and P-P reflections in VSP data.


Author(s):  
Karan S Belsare ◽  
Gajanan D Patil

A low cost and reliable protection scheme has been designed for a three phase induction motor against unbalance voltages, under voltage, over voltage, short circuit and overheating protection. Taking the cost factor into consideration the design has been proposed using microcontroller Atmega32, MOSFETs, relays, small CTs and PTs. However the sensitivity of the protection scheme has been not compromised. The design has been tested online in the laboratory for small motors and the same can be implemented for larger motors by replacing the i-v converters and relays of suitable ratings.


2019 ◽  
Vol 2019 (4) ◽  
pp. 7-22
Author(s):  
Georges Bridel ◽  
Zdobyslaw Goraj ◽  
Lukasz Kiszkowiak ◽  
Jean-Georges Brévot ◽  
Jean-Pierre Devaux ◽  
...  

Abstract Advanced jet training still relies on old concepts and solutions that are no longer efficient when considering the current and forthcoming changes in air combat. The cost of those old solutions to develop and maintain combat pilot skills are important, adding even more constraints to the training limitations. The requirement of having a trainer aircraft able to perform also light combat aircraft operational mission is adding unnecessary complexity and cost without any real operational advantages to air combat mission training. Thanks to emerging technologies, the JANUS project will study the feasibility of a brand-new concept of agile manoeuvrable training aircraft and an integrated training system, able to provide a live, virtual and constructive environment. The JANUS concept is based on a lightweight, low-cost, high energy aircraft associated to a ground based Integrated Training System providing simulated and emulated signals, simulated and real opponents, combined with real-time feedback on pilot’s physiological characteristics: traditionally embedded sensors are replaced with emulated signals, simulated opponents are proposed to the pilot, enabling out of sight engagement. JANUS is also providing new cost effective and more realistic solutions for “Red air aircraft” missions, organised in so-called “Aggressor Squadrons”.


2018 ◽  
Author(s):  
Ricardo Guedes ◽  
Vasco Furtado ◽  
Tarcísio Pequeno ◽  
Joel Rodrigues

UNSTRUCTURED The article investigates policies for helping emergency-centre authorities for dispatching resources aimed at reducing goals such as response time, the number of unattended calls, the attending of priority calls, and the cost of displacement of vehicles. Pareto Set is shown to be the appropriated way to support the representation of policies of dispatch since it naturally fits the challenges of multi-objective optimization. By means of the concept of Pareto dominance a set with objectives may be ordered in a way that guides the dispatch of resources. Instead of manually trying to identify the best dispatching strategy, a multi-objective evolutionary algorithm coupled with an Emergency Call Simulator uncovers automatically the best approximation of the optimal Pareto Set that would be the responsible for indicating the importance of each objective and consequently the order of attendance of the calls. The scenario of validation is a big metropolis in Brazil using one-year of real data from 911 calls. Comparisons with traditional policies proposed in the literature are done as well as other innovative policies inspired from different domains as computer science and operational research. The results show that strategy of ranking the calls from a Pareto Set discovered by the evolutionary method is a good option because it has the second best (lowest) waiting time, serves almost 100% of priority calls, is the second most economical, and is the second in attendance of calls. That is to say, it is a strategy in which the four dimensions are considered without major impairment to any of them.


2021 ◽  
Vol 11 (11) ◽  
pp. 5043
Author(s):  
Xi Chen ◽  
Bo Kang ◽  
Jefrey Lijffijt ◽  
Tijl De Bie

Many real-world problems can be formalized as predicting links in a partially observed network. Examples include Facebook friendship suggestions, the prediction of protein–protein interactions, and the identification of hidden relationships in a crime network. Several link prediction algorithms, notably those recently introduced using network embedding, are capable of doing this by just relying on the observed part of the network. Often, whether two nodes are linked can be queried, albeit at a substantial cost (e.g., by questionnaires, wet lab experiments, or undercover work). Such additional information can improve the link prediction accuracy, but owing to the cost, the queries must be made with due consideration. Thus, we argue that an active learning approach is of great potential interest and developed ALPINE (Active Link Prediction usIng Network Embedding), a framework that identifies the most useful link status by estimating the improvement in link prediction accuracy to be gained by querying it. We proposed several query strategies for use in combination with ALPINE, inspired by the optimal experimental design and active learning literature. Experimental results on real data not only showed that ALPINE was scalable and boosted link prediction accuracy with far fewer queries, but also shed light on the relative merits of the strategies, providing actionable guidance for practitioners.


2021 ◽  
Vol 27 (1) ◽  
Author(s):  
J. M. Lazarus ◽  
M. Ncube

Abstract Background Technology currently used for surgical endoscopy was developed and is manufactured in high-income economies. The cost of this equipment makes technology transfer to resource constrained environments difficult. We aimed to design an affordable wireless endoscope to aid visualisation during rigid endoscopy and minimally invasive surgery (MIS). The initial prototype aimed to replicate a 4-mm lens used in rigid cystoscopy. Methods Focus was placed on using open-source resources to develop the wireless endoscope to significantly lower the cost and make the device accessible for resource-constrained settings. An off the shelf miniature single-board computer module was used because of its low cost (US$10) and its ability to handle high-definition (720p) video. Open-source Linux software made monitor mode (“hotspot”) wireless video transmission possible. A 1280 × 720 pixel high-definition tube camera was used to generate the video signal. Video is transmitted to a standard laptop computer for display. Bench testing included latency of wireless digital video transmission. Comparison to industry standard wired cameras was made including weight and cost. The battery life was also assessed. Results In comparison with industry standard cystoscope lens, wired camera, video processing unit and light source, the prototype costs substantially less. (US$ 230 vs 28 000). The prototype is light weight (184 g), has no cables tethering and has acceptable battery life (of over 2 h, using a 1200 mAh battery). The camera transmits video wirelessly in near real time with only imperceptible latency of < 200 ms. Image quality is high definition at 30 frames per second. Colour rendering is good, and white balancing is possible. Limitations include the lack of a zoom. Conclusion The novel wireless endoscope camera described here offers equivalent high-definition video at a markedly reduced cost to contemporary industry wired units and could contribute to making minimally invasive surgery possible in resource-constrained environments.


Sensors ◽  
2021 ◽  
Vol 21 (10) ◽  
pp. 3515
Author(s):  
Sung-Ho Sim ◽  
Yoon-Su Jeong

As the development of IoT technologies has progressed rapidly recently, most IoT data are focused on monitoring and control to process IoT data, but the cost of collecting and linking various IoT data increases, requiring the ability to proactively integrate and analyze collected IoT data so that cloud servers (data centers) can process smartly. In this paper, we propose a blockchain-based IoT big data integrity verification technique to ensure the safety of the Third Party Auditor (TPA), which has a role in auditing the integrity of AIoT data. The proposed technique aims to minimize IoT information loss by multiple blockchain groupings of information and signature keys from IoT devices. The proposed technique allows IoT information to be effectively guaranteed the integrity of AIoT data by linking hash values designated as arbitrary, constant-size blocks with previous blocks in hierarchical chains. The proposed technique performs synchronization using location information between the central server and IoT devices to manage the cost of the integrity of IoT information at low cost. In order to easily control a large number of locations of IoT devices, we perform cross-distributed and blockchain linkage processing under constant rules to improve the load and throughput generated by IoT devices.


Sign in / Sign up

Export Citation Format

Share Document